Solveeit Logo

Question

Question: If two events A and B are such that P(A') = 0.3, P(2) = 0.4 and P(A ∩ B') = 0.5, then P ![](https://...

If two events A and B are such that P(A') = 0.3, P(2) = 0.4 and P(A ∩ B') = 0.5, then P equals:

A

¾

B

5/6

C

¼

D

3/7

Answer

¼

Explanation

Solution

P(A') = 0.3, P(2) = 0.4 and P(A ∩ B') = 0.5, P

(BAB)\left( \frac { B } { A \cap B ^ { \prime } } \right) = ?

P(BAB)=P(B(AB))P(AB)=P(AB)1P(AB)\mathrm { P } \left( \frac { \mathrm { B } } { \mathrm { A } \cap \mathrm { B } ^ { \prime } } \right) = \frac { \mathrm { P } \left( \mathrm { B } \cap \left( \mathrm { A } \cup \mathrm { B } ^ { \prime } \right) \right) } { \mathrm { P } \left( \mathrm { A } \cup \mathrm { B } ^ { \prime } \right) } = \frac { \mathrm { P } ( \mathrm { AB } ) } { 1 - \mathrm { P } \left( \mathrm { A } ^ { \prime } \mathrm { B } \right) }

P(A ∩B') = P(1) - P(AB)

⇒ P(AB) = P(1) - P(A ∩ B')

= 0.7 - 0.5 = 0.2

P(A' ∩ B) = P(2) - P(AB)

= 0.4 - 0.2 = 0.2

So, P(BAB)=0.210.2=14\mathrm { P } \left( \frac { \mathrm { B } } { \mathrm { A } \cup \mathrm { B } ^ { \prime } } \right) = \frac { 0.2 } { 1 - 0.2 } = \frac { 1 } { 4 }.