Solveeit Logo

Question

Question: If two events A and B are such that P(1) = 0.3 ; P(2) = 0.4 ; P\(( \overline { \mathrm { A } } \cap...

If two events A and B are such that

P(1) = 0.3 ; P(2) = 0.4 ; P(AB)( \overline { \mathrm { A } } \cap \overline { \mathrm { B } } )= 0.5 then P(BABˉ)P \left( \frac { B } { A \cup \bar { B } } \right) =

A

¾

B

5/6

C

¼

D

3/7

Answer

¼

Explanation

Solution

P (BABˉ)\left( \frac { B } { A \cup \bar { B } } \right) = P(B(AB))P(AB)\frac { \mathrm { P } ( \mathrm { B } \cap ( \mathrm { A } \cup \overline { \mathrm { B } } ) ) } { \mathrm { P } ( \mathrm { A } \cup \overline { \mathrm { B } } ) }

{ B Ç (A È ) = (B Ç A) È (B Ç ) &B Ç = f}

=P[(BA)(BB)]P(A)+P(B)P(AB)\frac { \mathrm { P } [ ( \mathrm { B } \cap \mathrm { A } ) \cup ( \mathrm { B } \cap \overline { \mathrm { B } } ) ] } { \mathrm { P } ( \mathrm { A } ) + \mathrm { P } ( \overline { \mathrm { B } } ) - \mathrm { P } ( \mathrm { A } \cap \overline { \mathrm { B } } ) }

= P(AB)P(A)+P(B)P(AB)\frac { \mathrm { P } ( \mathrm { A } \cap \mathrm { B } ) } { \mathrm { P } ( \mathrm { A } ) + \mathrm { P } ( \overline { \mathrm { B } } ) - \mathrm { P } ( \mathrm { A } \cap \overline { \mathrm { B } } ) } = 0.20.3+0.60.1\frac { 0.2 } { 0.3 + 0.6 - 0.1 }

= 0.20.8\frac { 0.2 } { 0.8 } = ¼

P (AB)( \overline { \mathrm { A } } \cap \overline { \mathrm { B } } ) = 0.5 ̃ 1 – P(A È B) = 0.5

P (A È B) = 0.5 ̃ P(1)+P(2)–P(A Ç B) = 0.5

0.3 + 0.4 – x = 0.5 ̃ P(A Ç B) = x = 0.7 – 0.5

P(AÇB)=x=0.2̃P(A Ç ) = P(1) – P(AÇ B)

= 0.3 – 0.2 = 0.1