Solveeit Logo

Question

Question: If two events A and B are such that \(P({{A}^{c}})=0.3,P(B)=0.4\) and \(P(A{{B}^{c}})=0.5\), then \(...

If two events A and B are such that P(Ac)=0.3,P(B)=0.4P({{A}^{c}})=0.3,P(B)=0.4 and P(ABc)=0.5P(A{{B}^{c}})=0.5, then P[B(ABc)]P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right] is equal to
(a) 12\dfrac{1}{2}
(b) 13\dfrac{1}{3}
(c) 14\dfrac{1}{4}
(d) None of these

Explanation

Solution

Hint: Taking the given probabilities of A and B events, first find out P(A),P(Bc)P(A),P({{B}^{c}}). Then using this, find out other probability identities like P(ABc)P(A\cap {{B}^{c}}) , etc.

Complete step-by-step answer:
As per the given information, A and B are two events, such that P(Ac)=0.3,P(B)=0.4P({{A}^{c}})=0.3,P(B)=0.4.
Now we know the probability that an event does not occur is one minus the probability that the event occurs, so
P(Ac)=1P(A)P({{A}^{c}})=1-P(A)
Substituting the given value, we get
0.3 = 1 – P(A)
Or, P(A) = 1 – 0.3 =0.7 ………….(i)
Similarly, we will find out for event B, i.e.,
P(Bc)=1P(B)P({{B}^{c}})=1-P(B)
Substituting the given value, we get
P(Bc)=10.4=0.6........(ii)P({{B}^{c}})=1-0.4=0.6........(ii)
Now we have to find,
P[B(ABc)]P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]
This can be written as,
P[B(ABc)]=P[B(ABc)]P(ABc).........(iii)P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{P\left[ B\left( A\cup {{B}^{c}} \right) \right]}{P\left( A\cup {{B}^{c}} \right)}.........(iii)
Observe the denominator, it is the union of event A and non occurring of event B, So
P(ABc)=P(A)+P(Bc)P(ABc)P\left( A\cup {{B}^{c}} \right)=P(A)+P({{B}^{c}})-P(A{{B}^{c}})
Now substituting the corresponding values from equation (i), (ii) and given value, we get
P(ABc)=0.7+0.60.5=0.8P\left( A\cup {{B}^{c}} \right)=0.7+0.6-0.5=0.8
Substituting this value in equation (iii), we get
P[B(ABc)]=P[B(ABc)]0.8.........(iv)P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{P\left[ B\left( A\cup {{B}^{c}} \right) \right]}{0.8}.........(iv)
Now we will simplify the numerator by opening the bracket as shown below:
P[B(ABc)]=P[(BA)(BBc)]P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P\left[ \left( B\cap A \right)\cup \left( B\cap {{B}^{c}} \right) \right]
But we know intersection of an event occurring and not occurring is one, so the above equation becomes,
P[B(ABc)]=P[(BA)]........(v)P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P\left[ \left( B\cap A \right) \right]........(v)
Now we know,
P(ABc)=P(A)P(AB) P(AB)=P(A)P(ABc) \begin{aligned} & P\left( A\cap {{B}^{c}} \right)=P(A)-P\left( A\cap B \right) \\\ & \Rightarrow P\left( A\cap B \right)=P(A)-P\left( A\cap {{B}^{c}} \right) \\\ \end{aligned}
Using this in equation (v), we get
P[B(ABc)]=P(A)P(ABc)P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A\cap {{B}^{c}} \right)
We can write P(ABc)=P(ABc)P\left( A\cap {{B}^{c}} \right)=P\left( A{{B}^{c}} \right), so the above equation becomes,
P[B(ABc)]=P(A)P(ABc)P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A{{B}^{c}} \right)
Substituting the values from equation (i) and the given values, we get
P[B(ABc)]=0.70.5=0.2P\left[ B\left( A\cup {{B}^{c}} \right) \right]=0.7-0.5=0.2
Substituting this value in equation (ii), we get
P[B(ABc)]=0.20.8=14P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{0.2}{0.8}=\dfrac{1}{4}
This is the required probability.

Note: Students get confused while applying the formula. Students should learn and understand the concept of probability clearly. Student gets confused to make out that P(ABc)=P(ABc)P\left( A\cap {{B}^{c}} \right)=P\left( A{{B}^{c}} \right), and they get stuck to find out the value P[B(ABc)]=P(A)P(ABc)P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A\cap {{B}^{c}} \right), and won’t be able to get the answer.