Solveeit Logo

Question

Question: If two events A and B are such that \(P ( A + B ) = \frac { 5 } { 6 }\) \(P ( A B ) = \frac { 1 } {...

If two events A and B are such that P(A+B)=56P ( A + B ) = \frac { 5 } { 6 } P(AB)=13P ( A B ) = \frac { 1 } { 3 } and P(Aˉ)=12P ( \bar { A } ) = \frac { 1 } { 2 } then the events A and B are

A

Independent

B

Mutually exclusive

C

Mutually exclusive and independent

D

None of these

Answer

Independent

Explanation

Solution

We have P(A+B)=P(A)+P(B)P(AB)P ( A + B ) = P ( A ) + P ( B ) - P ( A B )

56=12+P(B)13P(B)=46=23\Rightarrow \frac { 5 } { 6 } = \frac { 1 } { 2 } + P ( B ) - \frac { 1 } { 3 } \Rightarrow P ( B ) = \frac { 4 } { 6 } = \frac { 2 } { 3 }

Thus, P(A)P(B)=12×23=13=P(AB)P ( A ) \cdot P ( B ) = \frac { 1 } { 2 } \times \frac { 2 } { 3 } = \frac { 1 } { 3 } = P ( A B )

Hence events AA and are independent.