Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If two distinct points Q, R lie on the line of intersection of the planes – x + 2 y – z = 0 and 3 x – 5 y + 2 z = 0 and
PQ=PR=18PQ = PR = \sqrt{18}
where the point P is (1, –2, 3), then the area of the triangle PQR is equal to

A

2338\frac{2}{3} \sqrt{38}

B

4338\frac{4}{3}\sqrt{38}

C

8338\frac{8}{3}\sqrt{38}

D

1523\sqrt\frac{152}{3}

Answer

4338\frac{4}{3}\sqrt{38}

Explanation

Solution

The correct answer is (B) : 4338\frac{4}{3}\sqrt{38}

Fig. Triangle

Line L is x = y = z
PQ.(i^+j^+k^)=0\stackrel{→}{PQ}.(\hat{i}+\hat{j}+\hat{k})=0
(α3)+α+2+α1=0⇒ (α – 3) + α + 2 + α – 1 = 0
α=23⇒ α = \frac{2}{3}
so,
T=(23,23,23)T = ( \frac{2}{3}, \frac{2}{3}, \frac{2}{3})
PT=383PT = \sqrt\frac{38}{3}
QT=43⇒ QT = \frac{4}{\sqrt3}
So, Area
=(12×43×383).2= ( \frac{1}{2} × \frac{4}{\sqrt3} × \frac{\sqrt{38}}{\sqrt3} ) . 2
=4383squnits= \frac{4\sqrt{38}}{3} sq ∼ units