Solveeit Logo

Question

Question: If two distinct chords, drawn from the point (p, q) on the circle \(x^{2} + y^{2} = px + qy\) (where...

If two distinct chords, drawn from the point (p, q) on the circle x2+y2=px+qyx^{2} + y^{2} = px + qy (where p, q ≠ 0) are bisected by the x-axis, then

A

p2=q2p^{2} = q^{2}

B

p2=8q2p^{2} = 8q^{2}

C

p2<8q2p^{2} < 8q^{2}

D

p2>8q2p^{2} > 8q^{2}

Answer

p2>8q2p^{2} > 8q^{2}

Explanation

Solution

Let (h, 0) be a point on x-axis, then the equation of chord whose mid-point is (h, 0) will be

xh12p(x+h)12q(y+0)=h2phxh - \frac{1}{2}p(x + h) - \frac{1}{2}q(y + 0) = h^{2} - ph.

This passes through (p, q),

hence ph12p(p+h)12qq=h2php h - \frac { 1 } { 2 } p ( p + h ) - \frac { 1 } { 2 } q \cdot q = h ^ { 2 } - p h

ph12p212ph12q2=h2phh232ph+12(p2+q2)=0\Rightarrow ph - \frac{1}{2}p^{2} - \frac{1}{2}ph - \frac{1}{2}q^{2} = h^{2} - ph \Rightarrow h^{2} - \frac{3}{2}ph + \frac{1}{2}(p^{2} + q^{2}) = 0;

\because h is real, hence B24AC>0B^{2} - 4AC > 0

\therefore 94p24.12(p2+q2)>09p28(p2+q2)>0p28q2>0p2>8q2\frac{9}{4}p^{2} - 4.\frac{1}{2}(p^{2} + q^{2}) > 0 \Rightarrow 9p^{2} - 8(p^{2} + q^{2}) > 0 \Rightarrow p^{2} - 8q^{2} > 0 \Rightarrow p^{2} > 8q^{2}