Solveeit Logo

Question

Question: If two distinct chords drawn from the point (4, 4) on the parabola y<sup>2</sup> = 4ax are bisected ...

If two distinct chords drawn from the point (4, 4) on the parabola y2 = 4ax are bisected on the line y = mx, then the set of value of m is given by-

A

(122,1+22)\left( \frac { 1 - \sqrt { 2 } } { 2 } , \frac { 1 + \sqrt { 2 } } { 2 } \right)

B

R

C

(0, )

D

(–2, 2)

Answer

(122,1+22)\left( \frac { 1 - \sqrt { 2 } } { 2 } , \frac { 1 + \sqrt { 2 } } { 2 } \right)

Explanation

Solution

Any point on the line y = mx can be taken as (t, mt). Equation of the chord of parabola with this as mid point y m t – 2 (x + t) = m2 t2 – 4t It passes through (4, 4)

4mt – 2(4 + t) = m2 t2 – 4t

Ž m2t2 – 2 (2m + 1) t + 8 = 0 we want two such chords

D > 0 (2m + 1)2 – 8 m2 > 0

4m2 – 4m – 1 < 0 Ž 122\frac { 1 - \sqrt { 2 } } { 2 }< m < 1+22\frac { 1 + \sqrt { 2 } } { 2 }