Solveeit Logo

Question

Question: If trigonometric ratios \(\sec \alpha \) and \(\cos ec\alpha \) are the roots of the equation \({{x}...

If trigonometric ratios secα\sec \alpha and cosecα\cos ec\alpha are the roots of the equation x2px+q=0{{x}^{2}}-px+q=0 then
A. p2+q2=2q B. p2q2=2q C. p2+q2=2p D. p2q2=2p \begin{aligned} & \text{A}\text{. }{{\text{p}}^{2}}+{{q}^{2}}=2q \\\ & \text{B}\text{. }{{\text{p}}^{2}}-{{q}^{2}}=2q \\\ & \text{C}\text{. }{{\text{p}}^{2}}+{{q}^{2}}=2p \\\ & \text{D}\text{. }{{\text{p}}^{2}}-{{q}^{2}}=2p \\\ \end{aligned}

Explanation

Solution

We have given secα\sec \alpha and cosecα\cos ec\alpha are the roots of the equation x2px+q=0{{x}^{2}}-px+q=0. We have to find the relation between the roots.
Now, we know that if α and β\alpha \text{ and }\beta are the roots of the equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 then, the relation between the roots of the quadratic equation is given by
α+β=ba\alpha +\beta =\dfrac{-b}{a} and αβ=ca\alpha \beta =\dfrac{c}{a}

Complete step-by-step solution:
We have given equation x2px+q=0{{x}^{2}}-px+q=0 is a quadratic equation and secα\sec \alpha and cosecα\cos ec\alpha are roots of the equation.
So, the relation between secα\sec \alpha and cosecα\cos ec\alpha will be
Sum of roots
secα+cosecα=(p)1 secα+cosecα=p..............(i) \begin{aligned} & \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\\ & \sec \alpha +\cos ec\alpha =p..............(i) \\\ \end{aligned}
Now, product of roots will be

& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\\ & \sec \alpha .\cos ec\alpha =q \\\ \end{aligned}$$ Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$ So, $$\begin{aligned} & \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\\ & \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\\ \end{aligned}$$ Now, again consider equation (i) $\sec \alpha +\cos ec\alpha =p$ Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$ Now, substitute the values in equation (i), we get $\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$ Now, solve further $\begin{aligned} & \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\\ & \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\\ \end{aligned}$ Now, substitute the value from equation (ii), we get $\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$ Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $ ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. Here, $a=\sin \alpha $ and $b=\cos \alpha $ . So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $ We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $ Now, substituting the values from equation (i),(ii) and (iii), we get $\begin{aligned} & \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\\ & \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\\ & \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\\ & \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\\ & \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\\ & \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\\ & \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\\ \end{aligned}$ **Option B is the correct answer.** **Note:** In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.