Solveeit Logo

Question

Question: If trigonometric ratios \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alph...

If trigonometric ratios cot(θα),3cotθ,cot(θ+α)\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right) are in AP and θ\theta is not an integral multiple of π2\dfrac{\pi }{2}, then find the value of 4sin2θ3sin2α\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }.

Explanation

Solution

We will use various trigonometric identities to solve this question some of them are as states below,
cotθ=cosθsinθ,sin2θ=2sinθcosθ,sin(A+B)=sinA.cosB+cosA.sinB\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sin 2\theta =2\sin \theta \cos \theta ,\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B and 2sinA.sinB=cos(AB)cos(A+B)2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right). Also we will use the fact that if 3 numbers a, b & c are in AP then, 2b=a+c.2b = a + c.

Complete step-by-step solution:
Given that cot(θα),3cotθ,cot(θ+α)\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right) are in AP.
If three numbers are in AP, then; suppose a, b & c are the three numbers in AP then,
b=a+c2b=\dfrac{a+c}{2} or 2b=a+c2b=a+c ------ (1)
Here, Let a=cot(θα),b=3cotθ,c=cot(θ+α)a=\cot \left( \theta -\alpha \right),b=3\cot \theta ,c=\cot \left( \theta +\alpha \right).
Substituting these values in equation (1), as they are in AP we get,
2[3cotθ]=cot(θα)+cot(θ+α)2\left[ 3\cot \theta \right]=\cot \left( \theta -\alpha \right)+\cot \left( \theta +\alpha \right)
Now because we have, cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }.
Converting cotθ\cot \theta in terms of cosθ\cos \theta & sinθ\sin \theta in above equation we get,
6cosθsinθ=cos(θα)sin(θα)+cos(θ+α)sin(θ+α)6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)}+\dfrac{\cos \left( \theta +\alpha \right)}{\sin \left( \theta +\alpha \right)}
Now taking LCM of denominator we get,
6cosθsinθ=cos(θα)sin(θ+α)+cos(θ+α)sin(θα)sin(θα)sin(θ+α)6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)+\cos \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)}
Now we have a trigonometric identity as,
sinA.cosB+cosA.sinB=sin(A+B)\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)
Let, A=(θα),B=(θ+α)A=\left( \theta -\alpha \right),B=\left( \theta +\alpha \right)
Using this trigonometric identity in above equation we get,

& 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( \theta +\alpha +\theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)} \\\ & \Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( 2\theta \right)}{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)} \\\ \end{aligned}$$ Using trigonometric identity, $$\sin 2\theta =2\sin \theta \cos \theta $$ in above we get, $$\Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{2\sin \theta \cos \theta }{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}$$ Cross multiplying both we have, $$6\cos \theta \left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]=2{{\sin }^{2}}\theta \cos \theta $$ Cancelling $$\cos \theta $$ and 2 from both sides we get, $$3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta $$ Using trigonometric identity stated as, $$2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)$$ in above by taking, $$A=\theta +\alpha $$ and $$B=\theta -\alpha $$ we get, $$\begin{aligned} & \Rightarrow 3\left[ \cos \left( \theta +\alpha -\theta +\alpha \right)-\cos \left( \theta -\alpha +\theta +\alpha \right) \right]=2{{\sin }^{2}}\theta \\\ & \Rightarrow 3\left( \cos 2\alpha -\cos 2\theta \right)=2{{\sin }^{2}}\theta \\\ \end{aligned}$$ Now we will use trigonometric identity as stated, $$\cos 2A=1-2{{\sin }^{2}}A$$ Using this above we get, $$\begin{aligned} & \Rightarrow 3\left[ 1-2{{\sin }^{2}}\alpha +2{{\sin }^{2}}\theta -1 \right]=2{{\sin }^{2}}\theta \\\ & \Rightarrow -6{{\sin }^{2}}\alpha +6{{\sin }^{2}}\theta =2{{\sin }^{2}}\theta \\\ \end{aligned}$$ $$\begin{aligned} & \Rightarrow -6{{\sin }^{2}}\alpha =2{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta \\\ & \Rightarrow -6{{\sin }^{2}}\alpha =-4{{\sin }^{2}}\theta \\\ \end{aligned}$$ Dividing by $$-{{\sin }^{2}}\alpha $$ both sides we get, $$\Rightarrow +6=+4\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\alpha }$$ Dividing by 3 both sides we get, $$\Rightarrow \dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2$$ **So, answer is, $$\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2$$.** **Note:** Always remember that it is given that $$\theta $$ is not an integral multiple of $$\dfrac{\pi }{2}$$ therefore we can never use the formula of $$\sin \left( \theta +\dfrac{\pi }{2} \right)$$ or $$\sin \left( \alpha +\dfrac{\pi }{2} \right)$$ throughout the solution. Hence we have done all calculation without using these formulas. $$\Rightarrow 3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta $$