Solveeit Logo

Question

Mathematics Question on Similarity of Triangles

If ABCDEF\triangle ABC \sim \triangle DEF and AB=4AB = 4 cm, DE=6DE = 6 cm, EF=9EF = 9 cm, and FD=12FD = 12 cm, find the perimeter of ABC\triangle ABC.

Answer

Using the similarity ratio:
ABDE=BCEF=ACFD=46=23\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{FD} = \frac{4}{6} = \frac{2}{3}
Let the sides of ABC\triangle ABC be 4cm4 \, \text{cm}, xx, yy, corresponding to DEF\triangle DEF sides 6cm6 \, \text{cm}, 9cm9 \, \text{cm}, 12cm12 \, \text{cm}.
Solve:
x=239=6cm,y=2312=8cm.x = \frac{2}{3} \cdot 9 = 6 \, \text{cm}, \quad y = \frac{2}{3} \cdot 12 = 8 \, \text{cm}.
Perimeter of ABC=4+6+8=18cm\triangle ABC = 4 + 6 + 8 = 18 \, cm.
Correct Answer: 18 cm

Explanation

Solution

Using the similarity ratio:
ABDE=BCEF=ACFD=46=23\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{FD} = \frac{4}{6} = \frac{2}{3}
Let the sides of ABC\triangle ABC be 4cm4 \, \text{cm}, xx, yy, corresponding to DEF\triangle DEF sides 6cm6 \, \text{cm}, 9cm9 \, \text{cm}, 12cm12 \, \text{cm}.
Solve:
x=239=6cm,y=2312=8cm.x = \frac{2}{3} \cdot 9 = 6 \, \text{cm}, \quad y = \frac{2}{3} \cdot 12 = 8 \, \text{cm}.
Perimeter of ABC=4+6+8=18cm\triangle ABC = 4 + 6 + 8 = 18 \, cm.
Correct Answer: 18 cm