Solveeit Logo

Question

Question: If $\triangle ABC$ and $\triangle AEF$ are such that EB = BF, AB = EF = 1, BC = 6, AC = $\sqrt{33}$ ...

If ABC\triangle ABC and AEF\triangle AEF are such that EB = BF, AB = EF = 1, BC = 6, AC = 33\sqrt{33} and AB.AE+AC.AF\overline{AB}.\overline{AE}+\overline{AC}.\overline{AF} = 2, then the value of BC.BF\overline{BC}.\overline{BF} is (given figure)

Answer

2

Explanation

Solution

Let A be the origin. Let the position vectors of points B, C, E, F be b,c,e,f\vec{b}, \vec{c}, \vec{e}, \vec{f} respectively.
We are given AB = b=1|\vec{b}| = 1, BC = cb=6|\vec{c} - \vec{b}| = 6, AC = c=33|\vec{c}| = \sqrt{33}, EF = fe=1|\vec{f} - \vec{e}| = 1.
We are given that EB = BF, which means B is the midpoint of the line segment EF. Thus, the position vector of B is the average of the position vectors of E and F: b=e+f2\vec{b} = \frac{\vec{e} + \vec{f}}{2}, which implies e+f=2b\vec{e} + \vec{f} = 2\vec{b}.

We are given the equation AB.AE+AC.AF=2\overline{AB}.\overline{AE}+\overline{AC}.\overline{AF} = 2. In terms of position vectors relative to A, this is b.e+c.f=2\vec{b}.\vec{e} + \vec{c}.\vec{f} = 2.

We want to find the value of BC.BF\overline{BC}.\overline{BF}.
BC=cb\overline{BC} = \vec{c} - \vec{b}.
BF=fb\overline{BF} = \vec{f} - \vec{b}.
So, BC.BF=(cb).(fb)=c.fc.bb.f+b.b\overline{BC}.\overline{BF} = (\vec{c} - \vec{b}).(\vec{f} - \vec{b}) = \vec{c}.\vec{f} - \vec{c}.\vec{b} - \vec{b}.\vec{f} + \vec{b}.\vec{b}.

From e+f=2b\vec{e} + \vec{f} = 2\vec{b}, we have e=2bf\vec{e} = 2\vec{b} - \vec{f}.
Substitute this into the equation b.e+c.f=2\vec{b}.\vec{e} + \vec{c}.\vec{f} = 2:
b.(2bf)+c.f=2\vec{b}.(2\vec{b} - \vec{f}) + \vec{c}.\vec{f} = 2
2b.bb.f+c.f=22\vec{b}.\vec{b} - \vec{b}.\vec{f} + \vec{c}.\vec{f} = 2
2b2b.f+c.f=22|\vec{b}|^2 - \vec{b}.\vec{f} + \vec{c}.\vec{f} = 2
Since b=AB=1|\vec{b}| = AB = 1, we have 2(1)2b.f+c.f=22(1)^2 - \vec{b}.\vec{f} + \vec{c}.\vec{f} = 2.
2b.f+c.f=22 - \vec{b}.\vec{f} + \vec{c}.\vec{f} = 2.
b.f+c.f=0-\vec{b}.\vec{f} + \vec{c}.\vec{f} = 0.
f.(cb)=0\vec{f}.(\vec{c} - \vec{b}) = 0.
This means f.BC=0\vec{f}.\overline{BC} = 0, or AFBC\overline{AF} \perp \overline{BC}.

Now substitute c.f=b.f\vec{c}.\vec{f} = \vec{b}.\vec{f} into the expression for BC.BF\overline{BC}.\overline{BF}:
BC.BF=b.fc.bb.f+b2=c.b+1\overline{BC}.\overline{BF} = \vec{b}.\vec{f} - \vec{c}.\vec{b} - \vec{b}.\vec{f} + |\vec{b}|^2 = -\vec{c}.\vec{b} + 1.

We need to find the value of c.b\vec{c}.\vec{b}.
c.b=cbcos(CAB)\vec{c}.\vec{b} = |\vec{c}||\vec{b}| \cos(\angle CAB).
In ABC\triangle ABC, by the Law of Cosines, BC2=AB2+AC22ABACcos(CAB)BC^2 = AB^2 + AC^2 - 2 AB \cdot AC \cos(\angle CAB).
We are given BC = 6, AB = 1, AC = 33\sqrt{33}.
62=12+(33)22(1)(33)cos(CAB)6^2 = 1^2 + (\sqrt{33})^2 - 2 (1)(\sqrt{33}) \cos(\angle CAB).
36=1+33233cos(CAB)36 = 1 + 33 - 2\sqrt{33} \cos(\angle CAB).
36=34233cos(CAB)36 = 34 - 2\sqrt{33} \cos(\angle CAB).
233cos(CAB)=3436=22\sqrt{33} \cos(\angle CAB) = 34 - 36 = -2.
cos(CAB)=2233=133\cos(\angle CAB) = \frac{-2}{2\sqrt{33}} = -\frac{1}{\sqrt{33}}.

Now, c.b=cbcos(CAB)=33×1×(133)=1\vec{c}.\vec{b} = |\vec{c}||\vec{b}| \cos(\angle CAB) = \sqrt{33} \times 1 \times \left(-\frac{1}{\sqrt{33}}\right) = -1.

Finally, BC.BF=c.b+1=(1)+1=1+1=2\overline{BC}.\overline{BF} = -\vec{c}.\vec{b} + 1 = -(-1) + 1 = 1 + 1 = 2.