Solveeit Logo

Question

Question: If three vertices of a triangle ABC are \(A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}}{{y}_...

If three vertices of a triangle ABC are A(x1,y1),B(x2y2),C(x3,y3)A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}}{{y}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}} \right). lx+my+n=0lx+my+n=0 is an equation of the line LL. If the centroid of the triangle ABCABC is at the origin and algebraic sum of the length of the perpendicular from the vertices of triangle ABCABC on the line LL is equal to 11, then sum of the squares of reciprocals of the intercepts made by LL on the coordinate axes is equal to:
A) 0
B) 4
C) 9
D) 16

Explanation

Solution

Hint: The perpendicular distance from point (x1y1)\left( {{x}_{1}}{{y}_{1}} \right) to line ax+by+c=0ax+by+c=0 is given as d=ax1+by1+ca2+b2d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|.
Complete step-by-step answer:
We are given a triangle ABCABC whose vertices are given as A(x1y1),B(x2y2)&C(x3,y3)A\left( {{x}_{1}}{{y}_{1}} \right),B\left( {{x}_{2}}{{y}_{2}} \right)\And C\left( {{x}_{3}},{{y}_{3}} \right) .

Also , the given equation of the line is
Llx+my+n=0L\equiv lx+my+n=0
Now , in the question it is given that the centroid is at the origin i.e. (0,0)\left( 0,0 \right) .
We know , if a triangle has vertices (x1,y1),(x2,y2)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right) and (x3,y3)\left( {{x}_{3}},{{y}_{3}} \right) then , its centroid is given as
((x1+x2+x33),(y1+y2+y33))\left( \left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right),\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) \right) .
So ,(x1+x2+x33,y1+y2+y33)=(0,0)\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)=\left( 0,0 \right)
x1+x2+x33=0\Rightarrow \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3}=0
Or ,  x1+x2+x3=0..........(i)\text{ }{{x}_{1}}+{{x}_{2}}+{{x}_{3}}=0..........\left( i \right)
And , y1+y2+y33=0\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3}=0
Or , y1+y2+y3=0...........(ii){{y}_{1}}+{{y}_{2}}+{{y}_{3}}=0...........\left( ii \right)
Now , we know the perpendicular distance of point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) from the line ax+by+c=0ax+by+c=0 is given by
ax1+by1+ca2+b2\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right| .
Now, the given equation of line is Llx+my+n=0L\equiv lx+my+n=0 .
In the question , it is given that the algebraic sum of perpendicular distances of the vertices from the line is equal to 11 .
(lx1+my1+n)l2+m2+(lx2+my2+n)l2+m2+(lx3+my3+n)l2+m2=1\Rightarrow \dfrac{\left( l{{x}_{1}}+m{{y}_{1}}+n \right)}{\sqrt{{{l}^{2}}+{{m}^{2}}}}+\dfrac{\left( l{{x}_{2}}+m{{y}_{2}}+n \right)}{\sqrt{{{l}^{2}}+{{m}^{2}}}}+\dfrac{\left( l{{x}_{3}}+m{{y}_{3}}+n \right)}{\sqrt{{{l}^{2}}+{{m}^{2}}}}=1
l(x1+x2+x3)+m(y1+y2+y3)+3nl2+m2=1.........(iii)\Rightarrow \dfrac{l\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)+m\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)+3n}{\sqrt{{{l}^{2}}+{{m}^{2}}}}=1.........\left( iii \right)
Now , we will substitute (i)\left( i \right) and (ii)\left( ii \right) in equation (iii)\left( iii \right) .
On substituting (i)\left( i \right) and (ii)\left( ii \right) in equation (iii)\left( iii \right) , we get
3nl2+m2=1\dfrac{3n}{\sqrt{{{l}^{2}}+{{m}^{2}}}}=1
3n=l2+m2\Rightarrow 3n=\sqrt{{{l}^{2}}+{{m}^{2}}}
Now , we will square both sides .
On squaring both sides , we get
9n2=l2+m2............(iv)9{{n}^{2}}={{l}^{2}}+{{m}^{2}}............\left( iv \right)
Now , the given line is
lx+my+n=0 lx+my=n lxn+myn=1 x(nl)+y(nm)=1........(v) \begin{aligned} & lx+my+n=0 \\\ & \Rightarrow lx+my=-n \\\ & \Rightarrow \dfrac{lx}{-n}+\dfrac{my}{-n}=1 \\\ & \Rightarrow \dfrac{x}{\left( \dfrac{-n}{l} \right)}+\dfrac{y}{\left( \dfrac{-n}{m} \right)}=1........\left( v \right) \\\ \end{aligned}
Now we know , if aa is the xx -intercept and bb is the yy –intercept formed by a line with the coordinate axes, then equation of line is written as
xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1
Comparing with (v)\left( v \right) , we get:
a=nl&b=nma=\dfrac{-n}{l}\And b=\dfrac{-n}{m}
So , sum of squares of reciprocal of the intercept is given as
1a2+1b2 =1(nl)2+1(nm)2 =l2n2+m2n2=l2+m2n2...........(vi) \begin{aligned} & \dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}} \\\ & =\dfrac{1}{{{\left( \dfrac{-n}{l} \right)}^{2}}}+\dfrac{1}{{{\left( \dfrac{-n}{m} \right)}^{2}}} \\\ & =\dfrac{{{l}^{2}}}{{{n}^{2}}}+\dfrac{{{m}^{2}}}{{{n}^{2}}}=\dfrac{{{l}^{2}}+{{m}^{2}}}{{{n}^{2}}}...........\left( vi \right) \\\ \end{aligned}
Now , from (iv)\left( iv \right) we have l2+m2=9n2{{l}^{2}}+{{m}^{2}}=9{{n}^{2}}
Substituting in equation (vi)\left( vi \right) , we get
1a2+1b2=9n2n2=9\dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}}=\dfrac{9{{n}^{2}}}{{{n}^{2}}}=9
Hence , the sum of the squares of reciprocals of the intercepts made by LL on the coordinate axes is equal to 99 .
Note: While simplifying the equations, please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken.