Solveeit Logo

Question

Question: If three unit vectors **a**, **b**, **c** are such that \(\mathbf { a } \times ( \mathbf { b } \time...

If three unit vectors a, b, c are such that a×(b×c)=b2\mathbf { a } \times ( \mathbf { b } \times \mathbf { c } ) = \frac { \mathbf { b } } { 2 } then the vector a makes with b and c respectively the angles

A

40,8040 ^ { \circ } , 80 ^ { \circ }

B

45,4545 ^ { \circ } , 45 ^ { \circ }

C

30,6030 ^ { \circ } , 60 ^ { \circ }

D

90,6090 ^ { \circ } , 60 ^ { \circ }

Answer

90,6090 ^ { \circ } , 60 ^ { \circ }

Explanation

Solution

As we know, ......(i)

a×(b×c)=b2\because \mathbf { a } \times ( \mathbf { b } \times \mathbf { c } ) = \frac { \mathbf { b } } { 2 } (Given)

From equation (i),

or (a.c12)b(ab)c=c\left( \mathbf { a } . \mathbf { c } - \frac { 1 } { 2 } \right) \mathbf { b } - ( \mathbf { a } \cdot \mathbf { b } ) \mathbf { c } = \mathbf { c }

Comparison on both sides of b and

ac12=0\mathbf { a } \cdot \mathbf { c } - \frac { 1 } { 2 } = 0

accosθ=12(1)(1)cosθ=12θ=60\Rightarrow | \mathbf { a } \| \mathbf { c } | \cos \theta = \frac { 1 } { 2 } \Rightarrow ( 1 ) ( 1 ) \cos \theta = \frac { 1 } { 2 } \Rightarrow \theta = 60 ^ { \circ }

or , θ=90\therefore \theta = 90 ^ { \circ }.

So the angle between a\mathbf { a } with b and c are 9090 ^ { \circ } and 6060 ^ { \circ } respectively.