Solveeit Logo

Question

Mathematics Question on Sequence and series

If three successive terms of a G.P. with common ratio r(r>1)r \, (r>1) are the lengths of the sides of a triangle and r\lfloor r \rfloor denotes the greatest integer less than or equal to rr, then 3r+r3\lfloor r \rfloor + \lfloor -r \rfloor is equal to:

Answer

Let the three successive terms of the G.P. be a,ar,ar2a, ar, ar^2, where r \(> 1 ). Since these terms form the sides of a triangle, they must satisfy the triangle inequality:
a + ar $>$ ar^2, \quad ar + ar^2 $>$ a, \quad a + ar^2 $>$ ar

Checking the Triangle Inequality Conditions
1. a + ar \(> ar^2 ):
a(1 + r) $>$ ar^2 \implies 1 + r $>$ r^2 \implies r^2 - r - 1 $<$ 0
Solving the quadratic inequality:
r=1±1+42=1±52r = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}
Since r \(> 1 ), we have:
1 $<$ r $<$ \frac{1 + \sqrt{5}}{2} \approx 1.618

2. ar + ar^2 \(> a ):
ar(1 + r) $>$ a \implies r(1 + r) $>$ 1
This condition is always satisfied for r \(> 1 ).

3. a + ar^2 \(> ar ):
a(1 + r^2) $>$ ar \implies 1 + r^2 $>$ r \implies r^2 - r + 1 $>$ 0
This condition is always true for all values of rr.

Finding the Value of r\lfloor r \rfloor
Since 1 \(< r << \frac{1 + \sqrt{5}}{2} \approx 1.618 ), the greatest integer less than or equal to rr is:
r=1\lfloor r \rfloor = 1

Calculating 3r+r3\lfloor r \rfloor + \lfloor -r \rfloor
3r+r=3×1+r3\lfloor r \rfloor + \lfloor -r \rfloor = 3 \times 1 + \lfloor -r \rfloor
Since r\lfloor -r \rfloor is the greatest integer less than or equal to r-r, and -1.618 \(< -r << -1 ), we have:
r=2\lfloor -r \rfloor = -2
Thus:
3r+r=3×1+(2)=13\lfloor r \rfloor + \lfloor -r \rfloor = 3 \times 1 + (-2) = 1

Conclusion: 3r+r=13\lfloor r \rfloor + \lfloor -r \rfloor = 1.