Solveeit Logo

Question

Mathematics Question on Various Forms of the Equation of a Line

If three point (h, 0), (a, b) and (0, k) lie on a line, show that ah+bk=1\frac ah+ \frac bk=1.

Answer

If the points A (h, 0), B (a, b), and C (0, k) lie on a line, then

Slope of AB = Slope of BC

b0ah=kb0a\frac {b-0}{a-h}=\frac {k-b}{0-a}

bah=kba\frac {b}{a-h} = \frac {k-b}{-a}

ab=(kb)(ah)-ab=(k-b)(a-h)

ab=kakhab+bh-ab=ka-kh-ab+bh

ka+bh=khka+bh=kh

On dividing both sides by kh, we obtain

kakh+bhkh=khkh\frac {ka}{kh}+\frac {bh}{kh}=\frac {kh}{kh}

ah+bk=1\frac ah+\frac bk=1

Hence, ah+bk=1\frac ah+\frac bk=1