Solveeit Logo

Question

Question: If three numbers are added, their sum is ‘2’. If two times the second number is subtracted from the ...

If three numbers are added, their sum is ‘2’. If two times the second number is subtracted from the sum of the first and third numbers, we get ‘8’, and if three times the first number is added to the sum of the second and third numbers we get ‘4’. Find the numbers using matrices.

Explanation

Solution

Hint: Here, first we will assume the three variables as x, y, z and then AX=BAX=B this equation will be formed From this making X as subject we will get X=BA=A1BX=\dfrac{B}{A}={{A}^{-1}}B . To find inverse of matrix formula required is A1=1AAdj(A){{A}^{-1}}=\dfrac{1}{\left| A \right|}Adj\left( A \right) . To find Adjoint of A, the formula will be Adj(A)=(cofactor)TAdj\left( A \right)={{\left( \text{cofactor} \right)}^{T}}. So, on solving the equation X=BA=A1BX=\dfrac{B}{A}={{A}^{-1}}B by putting all the values, we will get the answer.

Complete step-by-step solution -
Here, we are given three statements in form of sentences, and three numbers are taken. So, we will assume the three numbers as x equals the first number, y equals the second number, z equals the third number.
Now, it is given that if three numbers are added, their sum is ‘2’. So, writing this in mathematical form, we get as
x+y+z=2x+y+z=2 …………………………(1)
Now, if two times the second number is subtracted from the sum of the first and third numbers, we get ‘8’. In mathematical form, we get
x+z2y=8x+z-2y=8 On rearranging terms, we get x2y+z=8\Rightarrow x-2y+z=8 ………………………….(2)
Next, if three times the first number is added to the sum of the second and third numbers we get ‘4’. So, writing this in mathematical form, we get as
3x+y+z=43x+y+z=4 ……………………….(3)
Now, all the three equations can be written in matrix form as,
[a11a12a13 a21a22a23 a31a32a33 ][x y z ]=[c1 c2 c3 ]\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\ \end{matrix} \right]\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\left[ \begin{matrix} {{c}_{1}} \\\ {{c}_{2}} \\\ {{c}_{3}} \\\ \end{matrix} \right]
Where a11=1,a12=1,a13=1,a21=1,a22=2,a23=1,a31=3,a32=1,a331{{a}_{11}}=1,{{a}_{12}}=1,{{a}_{13}}=1,{{a}_{21}}=1,{{a}_{22}}=-2,{{a}_{23}}=1,{{a}_{31}}=3,{{a}_{32}}=1,{{a}_{33}}-1, and c1,c2,c3{{c}_{1}},{{c}_{2}},{{c}_{3}} are the constants of the 3 equations. So, putting the values we get,
[111 121 311 ][x y z ]=[2 8 4 ]\left[ \begin{matrix} 1 & 1 & 1 \\\ 1 & -2 & 1 \\\ 3 & 1 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\left[ \begin{matrix} 2 \\\ 8 \\\ 4 \\\ \end{matrix} \right]
Here, we will assume as AX=BAX=B . we need to find value of X.
So, on dividing both side by A, we get X=BA=A1BX=\dfrac{B}{A}={{A}^{-1}}B . ……………………(4)
To find A1{{A}^{-1}} of the matrix, formula we will used is A1=1AAdj(A){{A}^{-1}}=\dfrac{1}{\left| A \right|}Adj\left( A \right) …………………………….(5)
Now, to find A\left| A \right| from the matrix [111 121 311 ]\left[ \begin{matrix} 1 & 1 & 1 \\\ 1 & -2 & 1 \\\ 3 & 1 & 1 \\\ \end{matrix} \right] we get as,
A=1(2111)1(1131)+1(113(2))\left| A \right|=1\left( -2\cdot 1-1\cdot 1 \right)-1\left( 1\cdot 1-3\cdot 1 \right)+1\left( 1\cdot 1-3\cdot \left( -2 \right) \right)
A=(21)(13)+(1+6)\left| A \right|=\left( -2-1 \right)-\left( 1-3 \right)+\left( 1+6 \right)
A=3+2+7=6\left| A \right|=-3+2+7=6
Now to find Adj(A)Adj\left( A \right), we need cofactors as shown below:
B11=21 11 =(2111)=21=3{{B}_{11}}=\left| \begin{matrix} -2 & 1 \\\ 1 & 1 \\\ \end{matrix} \right|=\left( -2\cdot 1-1\cdot 1 \right)=-2-1=-3
Cofactor will be (1)(i+j)=(1)(1+1)=12=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 1+1 \right)}}=-{{1}^{2}}=1 . So, we will multiply 1×(3)=31\times \left( -3 \right)=-3 . Thus, cofactor of B11=3{{B}_{11}}=-3 .
B12=11 31 =(1131)=13=2{{B}_{12}}=\left| \begin{matrix} 1 & 1 \\\ 3 & 1 \\\ \end{matrix} \right|=\left( 1\cdot 1-3\cdot 1 \right)=1-3=-2
Cofactor will be (1)(i+j)=(1)(1+2)=13=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 1+2 \right)}}=-{{1}^{3}}=-1 . So, we will multiply 1×(2)=2-1\times \left( -2 \right)=2 . Thus, cofactor of B12=2{{B}_{12}}=2 .
B13=12 31 =(113(2))=1+6=7{{B}_{13}}=\left| \begin{matrix} 1 & -2 \\\ 3 & 1 \\\ \end{matrix} \right|=\left( 1\cdot 1-3\cdot \left( -2 \right) \right)=1+6=7
Cofactor will be (1)(i+j)=(1)(1+3)=14=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 1+3 \right)}}=-{{1}^{4}}=1 . So, we will multiply 1×7=71\times 7=7 . Thus, cofactor of B13=7{{B}_{13}}=7 .
B21=11 11 =(1111)=11=0{{B}_{21}}=\left| \begin{matrix} 1 & 1 \\\ 1 & 1 \\\ \end{matrix} \right|=\left( 1\cdot 1-1\cdot 1 \right)=1-1=0
Cofactor will be (1)(i+j)=(1)(2+1)=13=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 2+1 \right)}}=-{{1}^{3}}=-1 . So, we will multiply 1×0=0-1\times 0=0 . Thus, cofactor of B21=0{{B}_{21}}=0 .
B22=11 31 =(1131)=13=2{{B}_{22}}=\left| \begin{matrix} 1 & 1 \\\ 3 & 1 \\\ \end{matrix} \right|=\left( 1\cdot 1-3\cdot 1 \right)=1-3=-2
Cofactor will be (1)(i+j)=(1)(2+2)=14=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 2+2 \right)}}=-{{1}^{4}}=1 . So, we will multiply 1×(2)=21\times \left( -2 \right)=-2 . Thus, cofactor of B22=2{{B}_{22}}=-2 .
B23=11 31 =(1131)=13=2{{B}_{23}}=\left| \begin{matrix} 1 & 1 \\\ 3 & 1 \\\ \end{matrix} \right|=\left( 1\cdot 1-3\cdot 1 \right)=1-3=-2
Cofactor will be (1)(i+j)=(1)(2+3)=15=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 2+3 \right)}}=-{{1}^{5}}=-1 . So, we will multiply 1×(2)=2-1\times \left( -2 \right)=2 . Thus, cofactor of B23=2{{B}_{23}}=2 .
B31=11 21 =(11(2)1)=1+2=3{{B}_{31}}=\left| \begin{matrix} 1 & 1 \\\ -2 & 1 \\\ \end{matrix} \right|=\left( 1\cdot 1-\left( -2 \right)\cdot 1 \right)=1+2=3
Cofactor will be (1)(i+j)=(1)(3+1)=14=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 3+1 \right)}}=-{{1}^{4}}=1 . So, we will multiply 1×3=31\times 3=3 . Thus, cofactor of B31=3{{B}_{31}}=3 .
B32=11 11 =(1111)=11=0{{B}_{32}}=\left| \begin{matrix} 1 & 1 \\\ 1 & 1 \\\ \end{matrix} \right|=\left( 1\cdot 1-1\cdot 1 \right)=1-1=0
Cofactor will be (1)(i+j)=(1)(3+2)=15=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 3+2 \right)}}=-{{1}^{5}}=-1 . So, we will multiply 1×0=0-1\times 0=0 . Thus, cofactor of B32=0{{B}_{32}}=0 .
B33=11 12 =(1(2)11)=21=3{{B}_{33}}=\left| \begin{matrix} 1 & 1 \\\ 1 & -2 \\\ \end{matrix} \right|=\left( 1\cdot \left( -2 \right)-1\cdot 1 \right)=-2-1=-3
Cofactor will be (1)(i+j)=(1)(3+3)=16=1{{\left( -1 \right)}^{\left( i+j \right)}}={{\left( -1 \right)}^{\left( 3+3 \right)}}=-{{1}^{6}}=1 . So, we will multiply 1×3=31\times -3=-3 . Thus, cofactor of B33=3{{B}_{33}}=-3 .
Adj(A)=(cofactors)T=[B11B21B31 B12B22B32 B13B23B33 ]=[303 220 723 ]Adj\left( A \right)={{\left( \text{cofactors} \right)}^{T}}=\left[ \begin{matrix} {{B}_{11}} & {{B}_{21}} & {{B}_{31}} \\\ {{B}_{12}} & {{B}_{22}} & {{B}_{32}} \\\ {{B}_{13}} & {{B}_{23}} & {{B}_{33}} \\\ \end{matrix} \right]=\left[ \begin{matrix} -3 & 0 & 3 \\\ 2 & -2 & 0 \\\ 7 & 2 & -3 \\\ \end{matrix} \right] (T is known as transpose)
Now, substituting all the values in equation (5), we get as
A1=16[303 220 723 ]{{A}^{-1}}=\dfrac{1}{6}\left[ \begin{matrix} -3 & 0 & 3 \\\ 2 & -2 & 0 \\\ 7 & 2 & -3 \\\ \end{matrix} \right]
So, now writing equation (4) we get as,
X=16[303 220 723 ][2 8 4 ]X=\dfrac{1}{6}\left[ \begin{matrix} -3 & 0 & 3 \\\ 2 & -2 & 0 \\\ 7 & 2 & -3 \\\ \end{matrix} \right]\left[ \begin{matrix} 2 \\\ 8 \\\ 4 \\\ \end{matrix} \right]

-3\cdot 2+0\cdot 8+3\cdot 4 \\\ 2\cdot 2+\left( -2\cdot 8 \right)+0\cdot 4 \\\ 7\cdot 2+2\cdot 8+\left( -3\cdot 4 \right) \\\ \end{matrix} \right]$$ On solving, we get $$X=\dfrac{1}{6}\left[ \begin{matrix} 6 \\\ -12 \\\ 18 \\\ \end{matrix} \right]$$ $$X=\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\\ -2 \\\ 3 \\\ \end{matrix} \right]$$ **Thus, three numbers as 1, -2, 3** Note: Generally, students make mistakes in multiplying the matrix $3\times 3$ with $3\times 1$ and calculation will be wrong. So, just remember this rule that to multiply $m\times n$ matrix by $n\times p$ matrix, the ns must be the same and the result obtained will be $m\times p$ . Therefore, $\left( m\times n \right)\times \left( n\times p \right)=m\times p$ matrix. Also, don’t forget to transpose the cofactor we find for adjoint matrix A i.e. $Adj\left( A \right)={{\left( \text{cofactor} \right)}^{T}}$ otherwise, the answer will be wrong. So, be careful with it.