Solveeit Logo

Question

Question: If three mutually perpendicular lines have direction cosines \[\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} ...

If three mutually perpendicular lines have direction cosines (l1,m1,n1),(l2,m2,n2)\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right),\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right) and (l3,m3,n3)\left( {{l}_{3}},{{m}_{3}},{{n}_{3}} \right) , then the line having direction cosines l1+l2+l3,m1+m2+m3{{l}_{1}}+{{l}_{2}}+{{l}_{3}},{{m}_{1}}+{{m}_{2}}+{{m}_{3}} and n1+n2+n3{{n}_{1}}+{{n}_{2}}+{{n}_{3}} make an angle of ….....with each other.
A. 00{}^\circ
B. 3030{}^\circ
C. 6060{}^\circ
D. 9090{}^\circ

Explanation

Solution

Hint: Using the direction cosines write the vectors of given 3 mutually perpendicular lines. Assume the required line to be some variable. By using the condition of perpendicularity : dot product of2 perpendicular vectors is 0. Find the 3 relations associated to 3 given mutually perpendicular vectors. Now, find the dot product of assumed variable vectors with the given 3 mutually perpendicular vectors. From which you get the angle between them. By dot product rule, we have 2 vectors of x degrees angle between them, we say:
ab=abcosθ\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta

Complete step-by-step answer:
The given direction cosines of 3 mutually perpendicular vectors are given by the terms: (l1,m1,n1) (l2,m2,n2) (l3,m3,n3)\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right)\text{ }\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)\text{ }\left( {{l}_{3}},{{m}_{3}},{{n}_{3}} \right)
Let this 3 mutually perpendicular vectors be named a, b, c:
a=l1i+m1j+n1ka={{l}_{1}}i+{{m}_{1}}j+{{n}_{1}}k ; b=l2i+m2j+n2kb={{l}_{2}}i+{{m}_{2}}j+{{n}_{2}}k ; c=l3i+m3j+n3kc={{l}_{3}}i+{{m}_{3}}j+{{n}_{3}}k
The direction cosine of required line for which we need angle:
Let this line be assumed as variable p, (for now)
p=(l1+l2+l3)i^+(m1+m2+m3)j^+(n1+n2+n3)k^p=\left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)\hat{i}+\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)\hat{j}+\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right)\hat{k}
By basic knowledge of geometry, if a, b are perpendicular we get : ab=0\overline{a}\cdot \overline{b}=0
As we know a, b, c are mutually perpendicular.
By applying above rule 3 times to 3 possible pairs, we get:
l1l2+m1m2+n1n2=0{{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0 ; l2l3+m2m3+n2n3=0{{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}=0 ; l3l1+m3m1+n3n1=0{{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}}=0
As l, m, n are direction cosine by general maths, we can say:
l12+m12+n12=1{{l}_{1}}^{2}+{{m}_{1}}^{2}+{{n}_{1}}^{2}=1 ; l22+m22+n22=1{{l}_{2}}^{2}+{{m}_{2}}^{2}+{{n}_{2}}^{2}=1 ; l32+m32+n32=1{{l}_{3}}^{2}+{{m}_{3}}^{2}+{{n}_{3}}^{2}=1
Case-1: Dot product of a, n
By dot product we know: - ab=abcosx\overline{a}\cdot \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\cos x
As these are direction cosines, we get a=b=c=n=1\left| a \right|=\left| b \right|=\left| c \right|=\left| n \right|=1
By applying above if x is angle between a, n then:
cosx=(l1i+m1j+n1k)((l1+l2+l3)i+(m1+m2+m3)j+(n1+n2+n3)k)\cos x=\left( {{l}_{1}}i+{{m}_{1}}j+{{n}_{1}}k \right)\left( \left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)i+\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)j+\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right)k \right)
By simplifying the dot product above, we get cosx\cos x to be:
cosx=l1(l1+l2+l3)+m1(m1+m2+m3)+n1(n1+n2+n3)\cos x={{l}_{1}}\left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)+{{m}_{1}}\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)+{{n}_{1}}\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right)
By simplifying more the cosx\cos x will get converted to:
cosx=l12+l1l2+m12+m1m2+m1m3+n12+n1n2+n1n3\cos x={{l}_{1}}^{2}+{{l}_{1}}{{l}_{2}}+{{m}_{1}}^{2}+{{m}_{1}}{{m}_{2}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}^{2}+{{n}_{1}}{{n}_{2}}+{{n}_{1}}{{n}_{3}}
By rearranging the terms in above equation, we get it as:
cosx=(l12+m12+n12)+(l1l2+m1m2+n1n2)+(l1l3+m1m3+n1n3)\cos x=\left( {{l}_{1}}^{2}+{{m}_{1}}^{2}+{{n}_{1}}^{2} \right)+\left( {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}} \right)+\left( {{l}_{1}}{{l}_{3}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}{{n}_{3}} \right)
By using the values of these expressions as calculated before, we get
cosx=1+0+0=1\cos x=1+0+0=1
By applying cos1{{\cos }^{-1}} on both sides of the equation, we get x=0x=0{}^\circ .
Similarly, as only 1, 2, 3 positions change we can say that:
y=z=0y=z=0{}^\circ
By above 2 equations, we can say x=y=z=0x=y=z=0 .
Hence, angle made by vector p with a, b, c are equal.
Option (a) is correct.

Note: (1) If you solve p.b, p.c you set the same result.
(2) The grouping of terms to use the equations known is crucial.
(3) Do the dot product carefully use ii=1 ij=0 ik=0i\cdot i=1\text{ }i\cdot j=0\text{ }i\cdot k=0 to solve.