Solveeit Logo

Question

Question: If three geometric means be inserted between 2 and 32, then the third geometric mean will be....

If three geometric means be inserted between 2 and 32, then the third geometric mean will be.

A

8

B

4

C

16

D

12

Answer

16

Explanation

Solution

2,g1,g2,g3,322 , g _ { 1 } , g _ { 2 } , g _ { 3 } , 32 where

a=2,ar=g1,ar2=g2,ar3=g3a = 2 , a r = g _ { 1 } , a r ^ { 2 } = g _ { 2 } , a r ^ { 3 } = g _ { 3 } andar4=32a r ^ { 4 } = 32

Now 2×r4=32r4=16=(2)4r=22 \times r ^ { 4 } = 32 \Rightarrow r ^ { 4 } = 16 = ( 2 ) ^ { 4 } \Rightarrow r = 2 .

Then third geometric mean =ar3=2×23=16= a r ^ { 3 } = 2 \times 2 ^ { 3 } = 16.

Aliter : By formula, G3=2(322)3/4=28=16G _ { 3 } = 2 \cdot \left( \frac { 32 } { 2 } \right) ^ { 3 / 4 } = 2 \cdot 8 = 16 .