Solveeit Logo

Question

Mathematics Question on Sequence and series

If three distinct numbers a,b,c are in G.P. and the equations ax2+2bx+c=0ax^2 + 2bx + c = 0 and dx2+2ex+f=0dx^2 + 2ex + f = 0 have a common root, then which one of the following statements is correct?

A

d,e,fd,e,f are in A.PA.P .

B

da,eb,fc\frac{d}{a} , \frac{e}{b} , \frac{f}{c} are in G.PG.P.

C

da,eb,fc\frac{d}{a} , \frac{e}{b} , \frac{f}{c} are in A.PA.P.

D

d,e,fd,e,f are in G.PG.P.

Answer

da,eb,fc\frac{d}{a} , \frac{e}{b} , \frac{f}{c} are in A.PA.P.

Explanation

Solution

b2=acb^2 = ac
Also roots of ax2=2bx+c=0ax^2 = 2bx + c = 0 are equal
x=ba,\Rightarrow x= \frac{-b}{a}, common root
d(ba)2+2e(ba)+=0\Rightarrow d\left(\frac{-b}{a}\right)^{2}+2e\left(\frac{-b}{a}\right)+\int=0
db22eab+fa2=0,b2=acdb^{2}-2eab+fa^{2}=0, b^{2}=ac
dac2eab+fa2=0\Rightarrow dac - 2eab + fa^{2} = 0
dc7eb+fa=0\Rightarrow dc - 7eb + fa = 0
Dividing by ac
da2eb+fc=0\Rightarrow \frac{d}{a}-\frac{2e}{b}+\frac{f}{c}=0
da+fc2.eb\Rightarrow \frac{d}{a}+\frac{f}{c}2. \frac{e}{b}