Solveeit Logo

Question

Question: If three conterminous edges of a parallelopiped are represented by \(\mathbf{a} - \mathbf{b},\mathbf...

If three conterminous edges of a parallelopiped are represented by ab,bc\mathbf{a} - \mathbf{b},\mathbf{b} - \mathbf{c} and ca\mathbf{c} - \mathbf{a}, then its volume is

A

[a b c]

B

2 [a b c]

C

[abc]2\lbrack\mathbf{abc}\rbrack^{2}

D

0

Answer

0

Explanation

Solution

(ab).(bc)×(ca)=(ab).(b×cb×a+c×a)(\mathbf{a} - \mathbf{b}).(\mathbf{b} - \mathbf{c}) \times (\mathbf{c} - \mathbf{a}) = (\mathbf{a} - \mathbf{b}).(\mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a})

=a.(b×c)a.(b×a)+a.(c×a)b.(b×c)+b.(b×a)b.(c×a)= \mathbf{a}.(\mathbf{b} \times \mathbf{c}) - \mathbf{a}.(\mathbf{b} \times \mathbf{a}) + \mathbf{a}.(\mathbf{c} \times \mathbf{a}) - \mathbf{b}.(\mathbf{b} \times \mathbf{c}) + \mathbf{b}.(\mathbf{b} \times \mathbf{a}) - \mathbf{b}.(\mathbf{c} \times \mathbf{a}) =0.