Solveeit Logo

Question

Question: If \(\theta\)and \(\varphi\)are eccentric angles of the ends of a pair of conjugate diameters of the...

If θ\thetaand φ\varphiare eccentric angles of the ends of a pair of conjugate diameters of the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,then θφ\theta - \varphiis equal to

A

±π2\pm \frac{\pi}{2}

B

±π\pm \pi

C

0

D

None of these

Answer

±π2\pm \frac{\pi}{2}

Explanation

Solution

Let y=m1xy = m_{1}xand y=m2xy = m_{2}xbe a pair of conjugate diameter of an ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1and let P(acosθ,bsinθ)P(a\cos\theta,b\sin\theta) and Q(acosφ,bsinφ)Q(a\cos\varphi,b\sin\varphi) be ends of these two diameters. Then m1m2=b2a2m_{1}m_{2} = \frac{- b^{2}}{a^{2}}

bsinθ0acosθ0×bsinφ0acosφ0=b2a2\frac{b\sin\theta - 0}{a\cos\theta - 0} \times \frac{b\sin\varphi - 0}{a\cos\varphi - 0} = \frac{- b^{2}}{a^{2}}sinθsinφ=cosθcosφ\sin\theta\sin\varphi = - \cos\theta\cos\varphi

cos(θφ)=0\cos(\theta - \varphi) = 0θφ=±π/2\theta - \varphi = \pm \pi/2