Solveeit Logo

Question

Question: If \(\theta = \sin^{- 1}x + \cos^{- 1}x - \tan^{- 1}x,x \geq 0\) then the smallest interval in whic...

If θ=sin1x+cos1xtan1x,x0\theta = \sin^{- 1}x + \cos^{- 1}x - \tan^{- 1}x,x \geq 0 then the smallest

interval in which θ\theta lies is

A

π2θ3π4\frac{\pi}{2} \leq \theta \leq \frac{3\pi}{4}

B

0θπ40 \leq \theta \leq \frac{\pi}{4}

C

π4θ0- \frac{\pi}{4} \leq \theta \leq 0

D

π4θπ2\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}

Answer

0θπ40 \leq \theta \leq \frac{\pi}{4}

Explanation

Solution

θ=sin1x+cos1xtan1x=π2tan1x\theta = \sin^{- 1}x + \cos^{- 1}x - \tan^{- 1}x = \frac{\pi}{2} - \tan^{- 1}xWe know

π2<tan1x<π2π2>tan1x>π20<π2tan1x<π4- \frac{\pi}{2} < \tan^{- 1}x < \frac{\pi}{2} \Rightarrow \frac{\pi}{2} > - \tan^{- 1}x > - \frac{\pi}{2}\therefore 0 < \frac{\pi}{2} - \tan^{- 1}x < \frac{\pi}{4}