Solveeit Logo

Question

Question: If \(\theta -\phi =\dfrac{\pi }{2}\) , then show that \(\left[ \begin{matrix} {{\cos }^{2}}\the...

If θϕ=π2\theta -\phi =\dfrac{\pi }{2} , then show that [cos2θcosθsinθ cosθsinθsin2θ ][cos2ϕcosϕsinϕ cosϕsinϕsin2ϕ ]=0\left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\cos }^{2}}\phi & \cos \phi \sin \phi \\\ \cos \phi \sin \phi & {{\sin }^{2}}\phi \\\ \end{matrix} \right]=0 .

Explanation

Solution

First, we rewrite the expression θϕ=π2\theta -\phi =\dfrac{\pi }{2} as ϕ=θπ2\phi =\theta -\dfrac{\pi }{2} . After that, using the two trigonometric identities sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B and cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B , we develop two expressions, which are sinϕ=cosθ\sin \phi =-\cos \theta and cosϕ=sinθ\cos \phi =\sin \theta . After that, we rewrite the matrix as,
[cos2θcosθsinθ cosθsinθsin2θ ][sin2θsinθcosθ sinθcosθcos2θ ]\Rightarrow \left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\sin }^{2}}\theta & -\sin \theta \cos \theta \\\ -\sin \theta \cos \theta & {{\cos }^{2}}\theta \\\ \end{matrix} \right]
We now multiply the two matrices to get [cos2θsin2θcos2θsin2θcos3θsinθ+sinθcos3θ cosθsin3θsin3θcosθcos2θsin2θ+sin2θcos2θ ]\left[ \begin{matrix} {{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\\ \cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\\ \end{matrix} \right] . Ruling out the like terms, we can arrive at the conclusion.

Complete step by step answer:
The condition that we are given is,
θϕ=π2\theta -\phi =\dfrac{\pi }{2}
By taking the ϕ\phi to the RHS, and π2\dfrac{\pi }{2} to the LHS, we can write it as,
ϕ=θπ2\phi =\theta -\dfrac{\pi }{2}
Now, we know the trigonometric identities, which are,
sin(A+B)=sinAcosB+cosAsinB cos(A+B)=cosAcosBsinAsinB \begin{aligned} & \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\\ & \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\\ \end{aligned}
Using these trigonometric identities, we can show that,
sinϕ=sin(θπ2)=sinθcos(π2)cosθsin(π2) sinϕ=cosθ \begin{aligned} & \Rightarrow \sin \phi =\sin \left( \theta -\dfrac{\pi }{2} \right)=\sin \theta \cos \left( -\dfrac{\pi }{2} \right)-\cos \theta \sin \left( -\dfrac{\pi }{2} \right) \\\ & \Rightarrow \sin \phi =-\cos \theta \\\ \end{aligned}
And that,
cosϕ=cos(θπ2)=cosθcos(π2)sinθsin(π2) cosϕ=sinθ \begin{aligned} & \Rightarrow \cos \phi =\cos \left( \theta -\dfrac{\pi }{2} \right)=\cos \theta \cos \left( -\dfrac{\pi }{2} \right)-\sin \theta \sin \left( -\dfrac{\pi }{2} \right) \\\ & \Rightarrow \cos \phi =\sin \theta \\\ \end{aligned}
The matrix that we need to simplify and solve is,
[cos2θcosθsinθ cosθsinθsin2θ ][cos2ϕcosϕsinϕ cosϕsinϕsin2ϕ ]\left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\cos }^{2}}\phi & \cos \phi \sin \phi \\\ \cos \phi \sin \phi & {{\sin }^{2}}\phi \\\ \end{matrix} \right]
Using the above expressions that we have derived of sinϕ\sin \phi and cosϕ\cos \phi , we can rewrite the matrix as,
[cos2θcosθsinθ cosθsinθsin2θ ][sin2θsinθcosθ sinθcosθcos2θ ]\Rightarrow \left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\sin }^{2}}\theta & -\sin \theta \cos \theta \\\ -\sin \theta \cos \theta & {{\cos }^{2}}\theta \\\ \end{matrix} \right]
Now, we know the multiplication of two matrices of order 2×22\times 2 go as,
[ab cd ][ef gh ]=[ae+bgaf+bh ce+dgcf+dh ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right]\left[ \begin{matrix} e & f \\\ g & h \\\ \end{matrix} \right]=\left[ \begin{matrix} ae+bg & af+bh \\\ ce+dg & cf+dh \\\ \end{matrix} \right]
So, multiplying the above matrices, we get,

& \Rightarrow \left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\sin }^{2}}\theta & -\sin \theta \cos \theta \\\ -\sin \theta \cos \theta & {{\cos }^{2}}\theta \\\ \end{matrix} \right] \\\ & =\left[ \begin{matrix} {{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\left( \cos \theta \sin \theta \right)}^{2}} & -{{\cos }^{2}}\theta \sin \theta \cos \theta +\cos \theta \sin \theta {{\cos }^{2}}\theta \\\ \cos \theta \sin \theta {{\sin }^{2}}\theta -{{\sin }^{2}}\theta \sin \theta \cos \theta & -{{\left( \cos \theta \sin \theta \right)}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\\ \end{matrix} \right] \\\ \end{aligned}$$ Simplifying the above matrix elements, we get, $$\begin{aligned} & \Rightarrow \left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\sin }^{2}}\theta & -\sin \theta \cos \theta \\\ -\sin \theta \cos \theta & {{\cos }^{2}}\theta \\\ \end{matrix} \right] \\\ & =\left[ \begin{matrix} {{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\\ \cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\\ \end{matrix} \right] \\\ \end{aligned}$$ Ruling out the like terms in the element spaces, we get, $$\begin{aligned} & \Rightarrow \left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\sin }^{2}}\theta & -\sin \theta \cos \theta \\\ -\sin \theta \cos \theta & {{\cos }^{2}}\theta \\\ \end{matrix} \right] \\\ & =\left[ \begin{matrix} 0 & 0 \\\ 0 & 0 \\\ \end{matrix} \right] \\\ \end{aligned}$$ Now, we know that the matrix $$\left[ \begin{matrix} 0 & 0 \\\ 0 & 0 \\\ \end{matrix} \right]$$ is called a null matrix or a zero matrix, and can also be represented by the digit $0$ as a short form. Thus, we have proved that the matrix $\left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\cos }^{2}}\phi & \cos \phi \sin \phi \\\ \cos \phi \sin \phi & {{\sin }^{2}}\phi \\\ \end{matrix} \right]=0$ if $\theta -\phi =\dfrac{\pi }{2}$ . **Note:** We can also solve the problem in a similar way, but now we replace $\theta $ with $2\theta $ . To do this, we rewrite the matrix as $\begin{aligned} & \Rightarrow \left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\cos }^{2}}\phi & \cos \phi \sin \phi \\\ \cos \phi \sin \phi & {{\sin }^{2}}\phi \\\ \end{matrix} \right] \\\ & =\dfrac{1}{4}\left[ \begin{matrix} 2{{\cos }^{2}}\theta & 2\cos \theta \sin \theta \\\ 2\cos \theta \sin \theta & 2{{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} 2{{\cos }^{2}}\phi & 2\cos \phi \sin \phi \\\ 2\cos \phi \sin \phi & 2{{\sin }^{2}}\phi \\\ \end{matrix} \right] \\\ \end{aligned}$ Now, we know $\begin{aligned} & 2{{\cos }^{2}}\theta =1+\cos 2\theta \\\ & 2{{\sin }^{2}}\theta =1-\cos 2\theta \\\ & 2\sin \theta \cos \theta =\sin 2\theta \\\ \end{aligned}$ Using these, we get, $\begin{aligned} & \Rightarrow \left[ \begin{matrix} {{\cos }^{2}}\theta & \cos \theta \sin \theta \\\ \cos \theta \sin \theta & {{\sin }^{2}}\theta \\\ \end{matrix} \right]\left[ \begin{matrix} {{\cos }^{2}}\phi & \cos \phi \sin \phi \\\ \cos \phi \sin \phi & {{\sin }^{2}}\phi \\\ \end{matrix} \right] \\\ & =\dfrac{1}{4}\left[ \begin{matrix} 1+\cos 2\theta & \sin 2\theta \\\ \sin 2\theta & 1-\cos 2\theta \\\ \end{matrix} \right]\left[ \begin{matrix} 1+\cos 2\phi & \sin 2\phi \\\ \sin 2\phi & 1-\cos 2\phi \\\ \end{matrix} \right] \\\ \end{aligned}$ Solving this in a similar way and incorporating $\phi =\theta -\dfrac{\pi }{2}$ , we get the same required answer.