Solveeit Logo

Question

Question: If \(\theta = n\pi + ( - 1)^{n}\frac{\pi}{3}\), then the general value of \(\cos^{2}(A + B) + \sin^...

If θ=nπ+(1)nπ3\theta = n\pi + ( - 1)^{n}\frac{\pi}{3}, then the

general value of cos2(A+B)+sin2(A+B)+cos2B=0\cos^{2}(A + B) + \sin^{2}(A + B) + \cos 2B = 0is.

A

1+cos2B=01 + \cos 2B = 0

B

cos2B=cosπ\cos 2B = \cos\pi

C

2B=2nπ+π2B = 2n\pi + \pi

D

B=(2n+1)π2,nZ.B = (2n + 1)\frac{\pi}{2},n \in Z.

Answer

cos2B=cosπ\cos 2B = \cos\pi

Explanation

Solution

tan2θ2tanθ+1=0\tan^{2}\theta - 2\tan\theta + 1 = 0

\Rightarrow

= 0, (from the given condition)

tanθ=1=tanπ4\tan\theta = 1 = \tan\frac{\pi}{4} \Rightarrow.

Trick : In such type of problems, the general value of θ=nπ+π4\theta = n\pi + \frac{\pi}{4} is given by 2cos2θ(2+1)cosθ1+(2+1)2=02\cos^{2}\theta - (\sqrt{2} + 1)\cos\theta - 1 + \frac{(\sqrt{2} + 1)}{\sqrt{2}} = 0. So the general value of \Rightarrow is

\Rightarrow.