Solveeit Logo

Question

Question: If \(\theta \) lies in the third quadrant, then the expression \(\sqrt {4{{\sin }^4}\theta + {{\sin ...

If θ\theta lies in the third quadrant, then the expression 4sin4θ+sin22θ+4cos2(π4θ2)\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}(\dfrac{\pi }{4} - \dfrac{\theta }{2}) equals 2.
A. True
B. False

Explanation

Solution

Hint: Here we will solve the given equation using the trigonometric identities and check whether the value of expression equals 2 or not.

Complete step-by-step answer:
As we know that sin2θ=2sinθcosθ(1)\sin 2\theta = 2\sin \theta \cos \theta \to (1)
Now according to the question
4sin4θ+sin22θ+4cos2(π4θ2)(2)\Rightarrow \sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}(\dfrac{\pi }{4} - \dfrac{\theta }{2}) \to (2)
Putting the value of sin2θ\sin 2\theta as in equation (1) in equation (2) then we have
4sin4θ+sin22θ=4sin2θ(sin2θ+cos2θ)=4sin2θ=2sinθ.\Rightarrow \sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } = \sqrt {4{{\sin }^2}\theta ({{\sin }^2}\theta + {{\cos }^2}\theta )} = \sqrt {4{{\sin }^2}\theta } = 2\left| {\sin \theta } \right|.
Now as per question, θ\theta lies in the third quadrant, so sinθ<0\sin \theta < 0 and sinθ=sinθ\left| {\sin \theta } \right| = - \sin \theta
Hence 4sin4θ+sin22θ=2sinθ\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } = - 2\sin \theta
And 4cos2(π4θ2)=2[1+cos(π2θ)]=2+2sinθ [cos2θ = 2cos2θ1](3)4{\cos ^2}(\dfrac{\pi }{4} - \dfrac{\theta }{2}) = 2[1 + \cos \left( {\dfrac{\pi }{2} - \theta } \right)] = 2 + 2\sin \theta {\text{ [}}\because {\text{cos2}}\theta {\text{ = 2co}}{{\text{s}}^2}\theta - 1] \to (3)
Hence the given expression reduces to:
2sinθ+2+2sinθ=2\Rightarrow - 2\sin \theta + 2 + 2\sin \theta = 2
So, the answer is True, option A is correct.

Note: Equation (1) and (3) is trigonometry identity, while solving any question always try to expand the expression by putting the value of trigonometry identities. Remember x=x\left| x \right| = x if x0x \geqslant 0 and x=x\left| x \right| = - x if x0x \leqslant 0. In the third quadrant only tanθ\tan \theta and cotθ\cot \theta is positive.