Solveeit Logo

Question

Question: If \(\theta\) lies in the second quadrant, then the value of \(\sqrt{\left( \frac{1 - \sin\theta}{1 ...

If θ\theta lies in the second quadrant, then the value of (1sinθ1+sinθ)+(1+sinθ1sinθ)\sqrt{\left( \frac{1 - \sin\theta}{1 + \sin\theta} \right)} + \sqrt{\left( \frac{1 + \sin\theta}{1 - \sin\theta} \right)}

A

2secθ2\sec\theta

B

2secθ- 2\sec\theta

C

2cosecθ2\text{cosec}\theta

D

None of these

Answer

2secθ- 2\sec\theta

Explanation

Solution

(1sinθ1+sinθ)+(1+sinθ1sinθ)\sqrt{\left( \frac{1 - \sin\theta}{1 + \sin\theta} \right)} + \sqrt{\left( \frac{1 + \sin\theta}{1 - \sin\theta} \right)} is the sum of two positive quantities and hence the result must be positive. But for π2<θ<π,\frac{\pi}{2} < \theta < \pi,

we have the sum equal to 1sinθ+1+sinθ1sin2θ=2cosθ;\frac{1 - \sin\theta + 1 + \sin\theta}{\sqrt{1 - \sin^{2}\theta}} = \frac{2}{\cos\theta}; which is negative.

(cosθ\because\cos\theta is negative for θ lying in 2nd quadrant). So the required positive value =2cosθ=2secθ,(π2<θ<π)= \frac{- 2}{\cos\theta} = - 2\sec\theta,\left( \frac{\pi}{2} < \theta < \pi \right).