Solveeit Logo

Question

Question: If \[\theta \] is the angle which the straight line joining the points \[\left( {{x}_{1}},{{y}_{1}} ...

If θ\theta is the angle which the straight line joining the points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right)and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right)subtends at the origin prove that tanθ=x2y1x1y2x1x2+y1y2\tan \theta =\dfrac{{{x}_{2}}{{y}_{1}}-{{x}_{1}}{{y}_{2}}}{{{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}} and cosθ=x1x2+y1y2x12+y12x22+y22\cos \theta =\dfrac{{{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}}{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}.

Explanation

Solution

Hint:Find the slope of the line formed by point A and B with origin because that will be the angle subtended by line AB on the origin , then use the Formula tanθ=m1m21+m1m2\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|to find θ\theta to find the angle between those two lines.

Complete step-by-step answer:
Let A (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and B (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) be the given points.
Let O be the origin.
Slope of OA = m1=y1x1{{m}_{1}}=\dfrac{{{y}_{1}}}{{{x}_{1}}}
Slope of OB = m2=y2x2{{m}_{2}}=\dfrac{{{y}_{2}}}{{{x}_{2}}}
It is given that θ\theta is the angle between lines OA and OB.
tanθ=m1m21+m1m2\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|
By substituting the values of A and B we get,
tanθ=y1x1y2x21+(y1x1×y2x2)\tan \theta =\dfrac{\dfrac{{{y}_{1}}}{{{x}_{1}}}-\dfrac{{{y}_{2}}}{{{x}_{2}}}}{1+\left( \dfrac{{{y}_{1}}}{{{x}_{1}}}\times \dfrac{{{y}_{2}}}{{{x}_{2}}} \right)}
By solving this we get,
tanθ=x2y1x1y2x1x2+y1y2\tan \theta =\dfrac{{{x}_{2}}{{y}_{1}}-{{x}_{1}}{{y}_{2}}}{{{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that cosθ=11+tan2θ\cos \theta =\sqrt{\dfrac{1}{1+{{\tan }^{2}}\theta }}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substitute the value (1) in (2), we get
cosθ=x1x2+y1y2(x2y1x1y2)2+(x1x2+y1y2)2\cos \theta =\dfrac{{{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}}{\sqrt{{{({{x}_{2}}{{y}_{1}}-{{x}_{1}}{{y}_{2}})}^{2}}+{{\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)}^{2}}}}
cosθ=x1x2+y1y2x22y12+x12y22+x12x22+y12y22\cos \theta =\dfrac{{{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}}{\sqrt{{{x}_{2}}^{2}{{y}_{1}}^{2}+{{x}_{1}}^{2}{{y}_{2}}^{2}+{{x}_{1}}^{2}{{x}_{2}}^{2}+{{y}_{1}}^{2}{{y}_{2}}^{2}}}
cosθ=x1x2+y1y2x12+y12x22+y22\cos \theta =\dfrac{{{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}}{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}
Hence proved.

Note: From the above we can conclude that after finding the slopes we get the value tanθ\tan \theta and further substituted in the trigonometric operation to get the final solution. Only variables are used so modulus doesn’t play an important role.