Solveeit Logo

Question

Mathematics Question on Application of derivatives

If θ\theta is semi vertical angle of a cone of maximum volume and given slant height, then tanθtan\theta is equal to

A

22

B

11

C

2\sqrt{2}

D

3\sqrt{3}

Answer

2\sqrt{2}

Explanation

Solution

In ΔOBC,\Delta OBC, sinθ=BCOC\sin \theta =\frac{BC}{OC}
\Rightarrow r=lsinθr=l\sin \theta .. (i) and cosθ=OBOC\cos \theta =\frac{OB}{OC}
\Rightarrow h=lcosθh=l\cos \theta ...(ii) Now, V=13πr2hV=\frac{1}{3}\pi {{r}^{2}}h
=13πl2sin2θ.lcosθ=\frac{1}{3}\pi {{l}^{2}}{{\sin }^{2}}\theta .l\cos \theta
\Rightarrow V=πl33sin2θcosθV=\frac{\pi {{l}^{3}}}{3}{{\sin }^{2}}\theta \cos \theta
\therefore dVdθ=πl33[2sinθcos2θ+sin2θ(sinθ)]\frac{dV}{d\theta }=\frac{\pi {{l}^{3}}}{3}[2\sin \theta co{{s}^{2}}\theta +{{\sin }^{2}}\theta -(\sin \theta )]
=πl33sinθ(2cos2θsin2θ)=\frac{\pi {{l}^{3}}}{3}\sin \theta (2co{{s}^{2}}\theta -{{\sin }^{2}}\theta ) and d2Vdθ2=πl33cosθ(2cos2θsin2θ)\frac{{{d}^{2}}V}{d{{\theta }^{2}}}=\frac{\pi {{l}^{3}}}{3}\cos \theta (2co{{s}^{2}}\theta -{{\sin }^{2}}\theta ) +πl33sinθ(2cos2θsin2θ)=0+\frac{\pi {{l}^{3}}}{3}\sin \theta (2co{{s}^{2}}\theta -{{\sin }^{2}}\theta )=0 On putting dVdθ=0,\frac{dV}{d\theta }=0, for maxima or minima
\therefore πl33sinθ(2cos2θsin2θ)=0\frac{\pi {{l}^{3}}}{3}\sin \theta (2{{\cos }^{2}}\theta -{{\sin }^{2}}\theta )=0
\Rightarrow tanθ=2\tan \theta =\sqrt{2} At θ=tan12\theta ={{\tan }^{-1}}\sqrt{2} d2Vdθ2=ve<0\frac{{{d}^{2}}V}{d{{\theta }^{2}}}=-ve<0
\therefore Volume is maximum at tanθ=2\tan \theta =\sqrt{2} .