Solveeit Logo

Question

Question: If \[\theta \] is an acute angle and \[\sin \theta = \cos \theta \], find the value of \[2{\tan ^2}\...

If θ\theta is an acute angle and sinθ=cosθ\sin \theta = \cos \theta , find the value of 2tan2θ+sin2θ12{\tan ^2}\theta + {\sin ^2}\theta - 1.

Explanation

Solution

We use the given equality between sine and cosine of an angle. Divide both sides of the equality with such a trigonometric function so we can make out the value of angle using tangent of the angle. Find the angle and substitute it in the equation whose value we have to find. Check whether the angle is acute or not. Use a table of trigonometric values to substitute values in the equation.

  • Acute angle: Any angle having measure less than 90{90^ \circ } is called an acute angle.
  • tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}

Complete step-by-step solution:
We are given sinθ=cosθ\sin \theta = \cos \theta ....................… (1)
We divide both sides of equation (1) by cosθ\cos \theta
sinθcosθ=cosθcosθ\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\cos \theta }}{{\cos \theta }}
Cancel same terms in RHS of the equation and use tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}in LHS of the equation
tanθ=1\Rightarrow \tan \theta = 1........................… (2)
Now we know from the table of trigonometric functions thattan45=1\tan {45^ \circ } = 1. Substitute the value of 1 in equation (2)
tanθ=tan45\Rightarrow \tan \theta = \tan {45^ \circ }
Take inverse tangent function on both sides of the equation
tan1(tanθ)=tan1(tan45)\Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}\left( {\tan {{45}^ \circ }} \right)
Since we know f1(f(x))=x{f^{ - 1}}(f(x)) = x
θ=45\Rightarrow \theta = {45^ \circ }.........................… (3)
Since, θ=45<90\theta = {45^ \circ } < {90^ \circ }, so the angle is an acute angle.
Now substitute the value from equation (3) in the equation 2tan2θ+sin2θ12{\tan ^2}\theta + {\sin ^2}\theta - 1
2tan2θ+sin2θ1=2tan2(45)+sin2(45)1\Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{\tan ^2}({45^ \circ }) + {\sin ^2}({45^ \circ }) - 1
2tan2θ+sin2θ1=2[tan(45)]2+[sin(45)]21\Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{\left[ {\tan ({{45}^ \circ })} \right]^2} + {\left[ {\sin ({{45}^ \circ })} \right]^2} - 1.................… (4)
Substitute the value of tan45=1,sin45=12\tan {45^ \circ } = 1,\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} in equation (4)
2tan2θ+sin2θ1=2(1)2+(12)21\Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{(1)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1
2tan2θ+sin2θ1=2+121\Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2 + \dfrac{1}{2} - 1
Take LCM in RHS of the equation
2tan2θ+sin2θ1=4+122\Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = \dfrac{{4 + 1 - 2}}{2}
2tan2θ+sin2θ1=32\Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = \dfrac{3}{2}

\therefore The value of 2tan2θ+sin2θ12{\tan ^2}\theta + {\sin ^2}\theta - 1 is 32\dfrac{3}{2}

Note: * The table that tells us some basic values of trigonometric functions at common angles is given as

Angles (in degrees)0{0^ \circ }30{30^ \circ }45{45^ \circ }60{60^ \circ }90{90^ \circ }
sin012\dfrac{1}{2}12\dfrac{1}{{\sqrt 2 }}32\dfrac{{\sqrt 3 }}{2}11
cos132\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{2}0
tan013\dfrac{1}{{\sqrt 3 }}13\sqrt 3 Not defined
cosecNot defined22\sqrt 2 23\dfrac{2}{{\sqrt 3 }}1
sec123\dfrac{2}{{\sqrt 3 }}2\sqrt 2 2Not defined
cotNot defined3\sqrt 3 113\dfrac{1}{{\sqrt 3 }}0
  • Inverse of any function when applied on the same function cancels out the function and the inverse, i.e. f1(f(x))=x{f^{ - 1}}(f(x)) = x.