Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If θ(π2,3π2)\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right), then the value of 4cos4θ+sin22θ+4cotθcos2(π4θ2)\sqrt{4 \cos ^{4} \theta+\sin ^{2} 2 \theta}+4 \cot \theta \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)

A

2cotθ-2 \cot \theta

B

2cotθ2 \cot \theta

C

2cosθ2 \cos \theta

D

2sinθ2 \sin \theta

Answer

2cotθ2 \cot \theta

Explanation

Solution

4cos4θ+sin22θ+4cotθcos2(π4θ2)\sqrt{4 \cos ^{4} \theta+\sin ^{2} 2 \theta}+4 \cot \theta \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)
=4cos4θ+(2sinθcosθ)2=\sqrt{4 \cos ^{4} \theta+(2 \sin \theta \cos \theta)^{2}}
+2cotθ[2cos2(π4θ2)]+2 \cot \theta\left[2 \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right]
=4cos4θ+4sin2θcos2θ=\sqrt{4 \cos ^{4} \theta+4 \sin ^{2} \theta \cos ^{2} \theta}
+2cotθ[1+cos(π2θ)]+2 \cot \theta\left[1+\cos \left(\frac{\pi}{2}-\theta\right)\right]
[2cos2θ=1+cos2θ]\left[\because 2 \cos ^{2} \theta=1+\cos 2 \theta\right]
=4cos2θ(cos2θ+sin2θ)+2cotθ(1+sinθ)=\sqrt{4 \cos ^{2} \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}+2 \cot \theta(1+\sin \theta)
=2cosθ+2cotθ+2cosθ=|2 \cos \theta|+2 \cot \theta+2 \cos \theta
=2cosθ+2cotθ+2cosθ=-2 \cos \theta+2 \cot \theta+2 \cos \theta
[forθ(π2,3π2),cosθ=cosθ]\left[\text{for} \theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right), \cos \theta \mid=-\cos \theta\right]
=2cotθ=2 \cot \theta