Solveeit Logo

Question

Question: If \(\theta = \frac{\pi}{4}\), then \(\cos 3\theta = \frac{1}{2}\)...

If θ=π4\theta = \frac{\pi}{4}, then cos3θ=12\cos 3\theta = \frac{1}{2}

A

\Rightarrow

B

3θ=π33\theta = \frac{\pi}{3}

C

\Rightarrow

D

θ=π9\theta = \frac{\pi}{9}

Answer

θ=π9\theta = \frac{\pi}{9}

Explanation

Solution

\Rightarrow

\Rightarrow cotθ=sin2θ, (θnπ)2sin2θcosθ=cosθ\cot\theta = \sin 2\theta,\text{ }(\theta \neq n\pi) \Rightarrow 2\sin^{2}\theta\cos\theta = \cos\theta

\Rightarrow cosθ=0\cos\theta = 0

sin2θ=12=sin2(π4)\sin^{2}\theta = \frac{1}{2} = \sin^{2}\left( \frac{\pi}{4} \right) \Rightarrow

θ=(2n+1)π2θ=nπ±π4\theta = (2n + 1)\frac{\pi}{2}\theta = n\pi \pm \frac{\pi}{4}.