Solveeit Logo

Question

Question: If \(\theta = \frac{n\pi}{7} + \frac{\pi}{14}\), then the general value of \(3\sin^{2}x + 10\cos x -...

If θ=nπ7+π14\theta = \frac{n\pi}{7} + \frac{\pi}{14}, then the general value of 3sin2x+10cosx6=03\sin^{2}x + 10\cos x - 6 = 0 is.

A

3(1cos2x)+10cosx6=03(1 - \cos^{2}x) + 10\cos x - 6 = 0

B

(cosx3)(3cosx1)=0(\cos x - 3)(3\cos x - 1) = 0

C

cosx=3\cos x = 3

D

13\frac{1}{3}

Answer

3(1cos2x)+10cosx6=03(1 - \cos^{2}x) + 10\cos x - 6 = 0

Explanation

Solution

θ\theta

nπsum of number of θ\frac{n\pi}{\text{sum of number of }\theta}

\Rightarrow nπ1+2+3=nπ6\frac{n\pi}{1 + 2 + 3} = \frac{n\pi}{6},

(Taking +ve sign)