Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If θ=π2n+1,\theta =\frac{\pi }{{{2}^{n}}+1}, then the value of 2ncosθcos2θcos22θ.....cos2n1θ{{2}^{n}}\cos \theta \,\cos \,2\theta \,\cos \,{{2}^{2}}\theta .....\cos {{2}^{n-1}}\theta is

A

sinθ\sin \theta

B

π2\frac{\pi }{2}

C

00

D

11

Answer

11

Explanation

Solution

2n.cosθ.cos21θ.cos22θ......cos2n1θ{{2}^{n}}.\cos \theta .\,\,\cos \,{{2}^{1}}\theta .\,{{\cos }^{{{2}^{2}}}}\theta ......\cos \,{{2}^{n-1}}\theta
=2nsin2nθ2n.sinθ=sin2nθsinθ={{2}^{n}}\frac{\sin {{2}^{n}}\theta }{{{2}^{n}}.\sin \theta }=\frac{\sin {{2}^{n}}\theta }{\sin \theta }
\left\\{ \because \,\,\,\theta =\frac{\pi }{{{2}^{n}}+1} \right\\}
(2n.θ=πθ)(\because \,\,\,{{2}^{n}}.\theta =\pi -\theta )
=sin(πθ)sinθ=sinθsinθ=1=\frac{\sin \,(\pi -\theta )}{\sin \theta }=\frac{\sin \theta }{\sin \theta }=1