Question
Mathematics Question on Trigonometric Functions
If θ=2n+1π, then the value of 2ncosθcos2θcos22θ.....cos2n−1θ is
A
sinθ
B
2π
C
0
D
1
Answer
1
Explanation
Solution
2n.cosθ.cos21θ.cos22θ......cos2n−1θ
=2n2n.sinθsin2nθ=sinθsin2nθ
\left\\{ \because \,\,\,\theta =\frac{\pi }{{{2}^{n}}+1} \right\\}
(∵2n.θ=π−θ)
=sinθsin(π−θ)=sinθsinθ=1