Solveeit Logo

Question

Question: If \[\theta =\dfrac{\pi }{{{2}^{n}}-1}\], then \[\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\c...

If θ=π2n1\theta =\dfrac{\pi }{{{2}^{n}}-1}, then cosθcos2θcos22θ...cos2n1θ=1an\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n-1}}\theta =\dfrac{1}{{{a}^{n}}}. Find the value of a.

Explanation

Solution

To solve the above question, we first find the value of 2nθ{{2}^{n}}\theta and that can be found from the term of θ=π2n1\theta =\dfrac{\pi }{{{2}^{n}}-1} and after that we place the value in the equation 2ncosθcos2θcos22θ...cos2n1θ=1{{2}^{n}}\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n-1}}\theta =1 and then solve both the RHS and LHS to prove the question.

Complete step by step solution:
To find the value of a, we first need to convert the equation from cosθcos2θcos22θ...cos2n1θ\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n-1}}\theta to 2ncosθcos2θcos22θ...cos2n1θ{{2}^{n}}\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n-1}}\theta as the value of the series 2ncosθcos2θcos22θ...cos2n1θ=1{{2}^{n}}\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n-1}}\theta =1 is equal to 1. Now how to prove that let us see below:
Taking the equation 2ncosθcos2θcos22θ...cos2n1θ=1{{2}^{n}}\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n-1}}\theta =1, we can write the value 2n{{2}^{n}} as 2×2×2×..×22\times 2\times 2\times ..\times 2 and placing them as:
2cosθ×2cos2θ×2cos22θ...×2cos2n1θ=1\Rightarrow 2\cos \theta \times 2\cos 2\theta \times 2\cos {{2}^{2}}\theta ...\times 2\cos {{2}^{n- 1}}\theta =1

Using the trigonometric conversion we change the above equation as:
1sinθ[2cosθsinθ×2cos2θ×2cos22θ...×2cos2n1θ]\Rightarrow \dfrac{1}{\sin \theta }\left[ 2\cos \theta \sin \theta \times 2\cos 2\theta \times 2\cos {{2}^{2}}\theta ...\times 2\cos {{2}^{n-1}}\theta \right]
1sinθ[sin2θ×2cos2θ×2cos22θ...×2cos2n1θ]\Rightarrow \dfrac{1}{\sin \theta }\left[ \sin 2\theta \times 2\cos 2\theta \times 2\cos {{2}^{2}}\theta...\times 2\cos {{2}^{n-1}}\theta \right]
1sinθ[sin22θ×2cos22θ...×2cos2n1θ]\Rightarrow \dfrac{1}{\sin \theta }\left[ \sin {{2}^{2}}\theta \times 2\cos {{2}^{2}}\theta ...\times 2\cos {{2}^{n-1}}\theta \right]
While solving with each value the final product we get is:
1sinθ[2sin2n1θ×cos2n1θ]\Rightarrow \dfrac{1}{\sin \theta }\left[ 2\sin {{2}^{n-1}}\theta \times \cos {{2}^{n-1}}\theta \right]
sin2nθsinθ\Rightarrow \dfrac{\sin {{2}^{n}}\theta }{\sin \theta }
sin(π2nθ)sinθ\Rightarrow \dfrac{\sin \left( \pi -{{2}^{n}}\theta \right)}{\sin \theta }
sin(2nπ+π2nπ2n+1)sinθ\Rightarrow \dfrac{\sin \left( \dfrac{{{2}^{n}}\pi +\pi -{{2}^{n}}\pi }{{{2}^{n}}+1} \right)}{\sin \theta }
Placing the value of θ=π2n1\theta =\dfrac{\pi }{{{2}^{n}}-1} as:
sin(θ)sinθ=1\Rightarrow \dfrac{\sin \left( \theta \right)}{\sin \theta }=1
Therefore, the value of the series 2ncosθcos2θcos22θ...cos2n1θ=1{{2}^{n}}\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n- 1}}\theta =1 and the placing the value of the cosθcos2θcos22θ...cos2n1θ\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n-1}}\theta as 12n\dfrac{1}{{{2}^{n}}}.
Now as given in the question cosθcos2θcos22θ...cos2n1θ=1an\cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...\cos {{2}^{n-1}}\theta =\dfrac{1}{{{a}^{n}}},
We will equate 12n=1an\dfrac{1}{{{2}^{n}}}=\dfrac{1}{{{a}^{n}}} giving us the value of aa as 2.

Note: Students may go wrong if they try to solve the question by replacing the value θ in the question from the start as doing so will only make the question difficult although the answer will come but the question will get more complicated therefore first solve the question and then lastly place the value θ.