Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If θ=cot17+cot18+cot118\theta =\cot^{-1}7+\cot ^{-1}8+\cot^{-1}18, then cotθ\cot\,\theta is equal to

A

22

B

44

C

33

D

none of these

Answer

33

Explanation

Solution

θ=tan117+tan118+tan1118\theta = tan^{-1} \frac{1}{7}+tan^{-1} \frac{1}{8} + tan^{-1} \frac{1}{18} =tan117+1811718+tan1118= tan^{-1} \frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{7}\cdot\frac{1}{8}} + tan^{-1} \frac{1}{18} =tan11555+tan1118 = tan^{-1} \frac{15}{55} +tan^{-1} \frac{1}{18} =tan1311+tan1118= tan^{-1} \frac{3}{11}+tan^{-1} \frac{1}{18} =tan1311+1181311118 = tan^{-1} \frac{\frac{3}{11}+\frac{1}{18}}{1-\frac{3}{11}\cdot\frac{1}{18}} =tan1(65195)= tan^{-1} \left(\frac{65}{195}\right) =tan1(13)= tan^{-1} \left(\frac{1}{3}\right) =cot13 = cot^{-1}3 cotθ=3 \therefore cot \,\theta = 3