Solveeit Logo

Question

Question: If \(\theta \) and \(\phi \) are angles in the first quadrant such that \(\tan \theta =\dfrac{1}{7}\...

If θ\theta and ϕ\phi are angles in the first quadrant such that tanθ=17\tan \theta =\dfrac{1}{7} and sinϕ=110\sin \phi =\dfrac{1}{\sqrt{10}}, then
A. θ+2ϕ=90\theta +2\phi ={{90}^{\circ }}
B. θ+2ϕ=30\theta +2\phi ={{30}^{\circ }}
C. θ+2ϕ=75\theta +2\phi ={{75}^{\circ }}
D. θ+2ϕ=45\theta +2\phi ={{45}^{\circ }}

Explanation

Solution

we need to find the value of θ+2ϕ\theta +2\phi . Therefore, using the value sinϕ=110\sin \phi =\dfrac{1}{\sqrt{10}} we find the value of cosϕ\cos \phi , tanϕ\tan \phi and tan2ϕ\tan 2\phi . Then we use the identity of tan(θ+2ϕ)=tanθ+tan(2ϕ)1tanθtan(2ϕ)\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)} to find the value of θ+2ϕ\theta +2\phi .

Complete step-by-step solution:
It is given that tanθ=17\tan \theta =\dfrac{1}{7} and sinϕ=110\sin \phi =\dfrac{1}{\sqrt{10}}. From the value of sinϕ=110\sin \phi =\dfrac{1}{\sqrt{10}}, we try to find the value of cosϕ\cos \phi and tanϕ\tan \phi .
We have the identity where sin2ϕ+cos2ϕ=1{{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1. This gives cosϕ=1sin2ϕ\cos \phi =\sqrt{1-{{\sin }^{2}}\phi }.
We take only the positive values as θ\theta and ϕ\phi are angles in the first quadrant which means any ratio of those angles will give positive value.
Putting the value, we get cosϕ=1(110)2=1110=310\cos \phi =\sqrt{1-{{\left( \dfrac{1}{\sqrt{10}} \right)}^{2}}}=\sqrt{1-\dfrac{1}{10}}=\dfrac{3}{\sqrt{10}}.
Now we try to find the value of tanϕ=sinϕcosϕ=110310=13\tan \phi =\dfrac{\sin \phi }{\cos \phi }=\dfrac{\dfrac{1}{\sqrt{10}}}{\dfrac{3}{\sqrt{10}}}=\dfrac{1}{3}.
From the value of tanϕ\tan \phi , we try to find the value of tan2ϕ\tan 2\phi where tan2ϕ=2tanϕ1tan2ϕ\tan 2\phi =\dfrac{2\tan \phi }{1-{{\tan }^{2}}\phi }.
Putting the values, we get tan2ϕ=2(13)1(13)2=34\tan 2\phi =\dfrac{2\left( \dfrac{1}{3} \right)}{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{3}{4}.
From the given equations in options, we can evaluate that we need the value of θ+2ϕ\theta +2\phi .
We have the associate angle formula of tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}.
We put the values of A=θ,B=2ϕA=\theta ,B=2\phi and get
tan(θ+2ϕ)=tanθ+tan(2ϕ)1tanθtan(2ϕ)\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}.
Now we put the values of the required ratios as tanθ=17\tan \theta =\dfrac{1}{7} and tan(2ϕ)=34\tan \left( 2\phi \right)=\dfrac{3}{4}.
tan(θ+2ϕ)=tanθ+tan(2ϕ)1tanθtan(2ϕ)=17+34117×34\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}=\dfrac{\dfrac{1}{7}+\dfrac{3}{4}}{1-\dfrac{1}{7}\times \dfrac{3}{4}}.
Now we simplify the equation to get tan(θ+2ϕ)=4+21283=2525=1\tan \left( \theta +2\phi \right)=\dfrac{4+21}{28-3}=\dfrac{25}{25}=1.
We now equate the value for our known values of ratio tan where tan(θ+2ϕ)=1=tan(45)\tan \left( \theta +2\phi \right)=1=\tan \left( {{45}^{\circ }} \right)
This gives (θ+2ϕ)=45\left( \theta +2\phi \right)={{45}^{\circ }}. The correct option is D.

Note: We need to be careful about the sign of the ratios. The quadrant dictates the signs and therefore if anything is not mentioned then we have to consider all possible choices.