Solveeit Logo

Question

Physics Question on Magnetism and matter

If θ1\theta_1 and θ2\theta_2 be the apparent angles of dip observed in two vertical planes at right angles to each other, then the true angle of dip θ\theta is given by :

A

tan2θ=tan2θ1+tan2θ2\tan^2 \theta = \tan^2 \theta_1 + \tan^2 \theta_2

B

cot2θ=cot2θ1cot2θ2\cot^2 \theta = \cot^2 \theta_1 - \cot^2 \theta_2

C

tan2θ=tan2θ1tan2θ2\tan^2 \theta = \tan^2 \theta_1 - \tan^2 \theta_2

D

cot2θ=cot2θ1+cot2θ2\cot^2 \theta = \cot^2 \theta_1 + \cot^2 \theta_2

Answer

cot2θ=cot2θ1+cot2θ2\cot^2 \theta = \cot^2 \theta_1 + \cot^2 \theta_2

Explanation

Solution

tanθ1=tanθcosα\tan \theta_1 = \frac{\tan \theta}{ \cos \alpha}
tanθ2=tanθcos(90α)=tanθsinα\Rightarrow \tan \theta_2 =\frac{\tan \theta }{\cos (90 - \alpha )}= \frac{\tan \theta}{\sin \alpha}
sin2α+cos2α=1\Rightarrow \sin^2 \alpha + \cos^2 \alpha = 1
cot2θ2+cot2θ1=cot2θ\Rightarrow \cot^2 \theta_2 + \cot^2 \theta_1 = \cot^2 \theta