Solveeit Logo

Question

Question: If \(\theta - \pi\)and \(z = \sin\alpha + i(1 - \cos\alpha)\), then \(2\sin\frac{\alpha}{2}\)is equa...

If θπ\theta - \piand z=sinα+i(1cosα)z = \sin\alpha + i(1 - \cos\alpha), then 2sinα22\sin\frac{\alpha}{2}is equal to.

A

0

B

Purely imaginary

C

Purely real

D

None of these

Answer

0

Explanation

Solution

We have zω=1|z||\omega| = 1

arg(zω)=π2zω=i\arg\left( \frac{z}{\omega} \right) = \frac{\pi}{2} \Rightarrow \frac{z}{\omega} = i

zω=1\left| \frac{z}{\omega} \right| = 1

Let z=ω=1|z| = |\omega| = 1, then zˉω=zωˉ=zωωˉω\bar{z}\omega = - z\bar{\omega} = \frac{- z}{\omega}\bar{\omega}\omega

zˉω=iω2=i.z=x+iy\bar{z}\omega = - i|\omega|^{2} = - i.z = x + iy

and z2z_{2}z2=πarg(z)z_{2} = \pi - ar ⥂ g(z)

Hence 12z2=18\frac{1}{2}|z|^{2} = 18.