Solveeit Logo

Question

Question: If there is term \({{x}^{2r}}\) in \({{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}\) , then (a) ...

If there is term x2r{{x}^{2r}} in (x+1x2)n3{{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}} , then
(a) n – 2r is a positive integral multiple of 3.
(b) n – 2r is even
(c) n – 2r is odd
(d) None of these

Explanation

Solution

First of all, we will understand what is the binomial expansion and define the general form of the binomial expansion. Then we will apply binomial expansion on the given binomial (x+1x2)n3{{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}} and try to find the general term of the binomial. We will assume that the variable is one such term is x2r{{x}^{2r}}. Thus, we can equate the power of x2r{{x}^{2r}}, i.e. 2r and the power of the variable in the general term and get a relation. Thus, based on the relation, we can choose one of the options.

Complete step-by-step solution:
A binomial, as the name suggests, is a polynomial with two terms. The binomial theorem is used to get the expression when a binomial is multiplied with itself n number of times.
Let (a + b) be a binomial. Suppose we multiply this binomial with itself n number of times. The resultant expression will be as follows:
\Rightarrow (a + b)(a + b)(a + b)…. n times.
(a+b)n\Rightarrow {{\left( a+b \right)}^{n}}
Thus, according to the binomial expansion theorem, the expression (a+b)n{{\left( a+b \right)}^{n}} can be expanded as follows:
(a+b)n=(n 0 )anb0+(n 1 )an1b1+(n 2 )an2b2+...+(n n )a0bn\Rightarrow {{\left( a+b \right)}^{n}}=\left( \begin{matrix} n \\\ 0 \\\ \end{matrix} \right){{a}^{n}}{{b}^{0}}+\left( \begin{matrix} n \\\ 1 \\\ \end{matrix} \right){{a}^{n-1}}{{b}^{1}}+\left( \begin{matrix} n \\\ 2 \\\ \end{matrix} \right){{a}^{n-2}}{{b}^{2}}+...+\left( \begin{matrix} n \\\ n \\\ \end{matrix} \right){{a}^{0}}{{b}^{n}}
Where (n r )=nCr=n!r!(nr)!\left( \begin{matrix} n \\\ r \\\ \end{matrix} \right){{=}^{n}}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}
Thus, the general term (r + 1)th of the expression will be Tr+1=(n r )anrbr{{T}_{r+1}}=\left( \begin{matrix} n \\\ r \\\ \end{matrix} \right){{a}^{n-r}}{{b}^{r}} where r is a positive integer such that 0rn0\le r\le n.
The expression given to us is (x+1x2)n3{{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}. This is a binomial with a = x and b = 1x2\dfrac{1}{{{x}^{2}}} and n = n – 3.
Thus, we will use binomial expansion theorem to expand (x+1x2)n3{{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}.

n-3 \\\ 0 \\\ \end{matrix} \right){{\left( x \right)}^{n-3}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{0}}+\left( \begin{matrix} n-3 \\\ 1 \\\ \end{matrix} \right){{\left( x \right)}^{n-4}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{1}}+\left( \begin{matrix} n-3 \\\ 2 \\\ \end{matrix} \right){{\left( x \right)}^{n-5}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{2}}+...+\left( \begin{matrix} n-3 \\\ n-3 \\\ \end{matrix} \right){{\left( x \right)}^{0}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$$ Where $\left( \begin{matrix} n-3 \\\ s \\\ \end{matrix} \right){{=}^{n}}{{C}_{s}}=\dfrac{\left( n-3 \right)!}{s!\left( n-s-3 \right)!}$ And the general (s + 1)th of the expression will be ${{T}_{s+1}}=\left( \begin{matrix} n-3 \\\ s \\\ \end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{s}}$, where s is a positive integer such that $0\le s\le n-3$. $\begin{aligned} & \Rightarrow {{T}_{s+1}}=\left( \begin{matrix} n-3 \\\ s \\\ \end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( x \right)}^{-2s}} \\\ & \Rightarrow {{T}_{s+1}}=\left( \begin{matrix} n-3 \\\ s \\\ \end{matrix} \right){{\left( x \right)}^{n-3-3s}} \\\ \end{aligned}$ Let us assume that the (s + 1)th has the variable ${{x}^{2r}}$. $\Rightarrow c{{x}^{2r}}=\left( \begin{matrix} n-3 \\\ s \\\ \end{matrix} \right){{\left( x \right)}^{n-3-3s}}$ , where c is some constant. Thus, since the bases are same, we can equate the powers. $\Rightarrow $ 2r = n – 3 – 3s $\Rightarrow $ n – 2r = 3(s + 1) Thus, we can say that n – 2r is a positive integral multiple of 3. **Hence, option (a) is the correct option.** **Note:** Students are advised to be careful while using the binomial expansion theorem as it only applies when binomials are multiplied by itself. If there is a product of multiple binomials, it cannot be used.