Solveeit Logo

Question

Question: If there exists a linear statistical relationship between two variables x and y, then the regression...

If there exists a linear statistical relationship between two variables x and y, then the regression coefficient of y on x is

A

Cov(x,y)σxσy\frac{Cov(x,y)}{\sigma_{x}\sigma_{y}}

B

Cov(x,y)σy2\frac{Cov(x,y)}{\sigma_{y}^{2}}

C

Cov(x,y)σx2\frac{Cov(x,y)}{\sigma_{x}^{2}}

D

Cov(x,y)σx\frac{Cov(x,y)}{\sigma_{x}}, where σx,σy\sigma_{x},\sigma_{y}are standard deviations of x and y respectively.

Answer

Cov(x,y)σx2\frac{Cov(x,y)}{\sigma_{x}^{2}}

Explanation

Solution

We know that, correlation coefficient i.e., r=Cov(x,y)σxσyr = \frac{Co ⥂ v(x,y)}{\sigma_{x}\sigma_{y}}

and regression coefficient of y on x i.e., byx=rσyσxb_{yx} = \frac{r\sigma_{y}}{\sigma_{x}}.

byx=Cov(x,y).σyσx.σy.σxbyx=Cov(x,y)σx2b_{yx} = \frac{Co ⥂ v(x,y).\sigma_{y}}{\sigma_{x}.\sigma_{y}.\sigma_{x}} \Rightarrow b_{yx} = \frac{Co ⥂ v(x,y)}{\sigma_{x}^{2}}.