Solveeit Logo

Question

Question: If there exist a chord a parabola y = ax² + bx, a, b ∈R,a≠0,b≠0, such that the end points of the cho...

If there exist a chord a parabola y = ax² + bx, a, b ∈R,a≠0,b≠0, such that the end points of the chord are (p, q) and (q, p) for some p, q ∈Rand p≠q then the least possible positive integral value of b is

A

1

B

2

C

3

D

4

Answer

4

Explanation

Solution

Let the equation of the parabola be y=ax2+bxy = ax^2 + bx, where a,bRa, b \in \mathbb{R}, a0a \neq 0, b0b \neq 0. Let the end points of the chord be (p,q)(p, q) and (q,p)(q, p), where p,qRp, q \in \mathbb{R} and pqp \neq q. Since these points lie on the parabola, they must satisfy the equation of the parabola.

For point (p,q)(p, q): q=ap2+bp(1)q = ap^2 + bp \quad (1) For point (q,p)(q, p): p=aq2+bq(2)p = aq^2 + bq \quad (2)

Subtracting equation (2) from equation (1): qp=(ap2+bp)(aq2+bq)q - p = (ap^2 + bp) - (aq^2 + bq) qp=a(p2q2)+b(pq)q - p = a(p^2 - q^2) + b(p - q) qp=a(pq)(p+q)+b(pq)q - p = a(p - q)(p + q) + b(p - q)

Since pqp \neq q, we know that pq0p - q \neq 0. We can divide both sides by (pq)(p - q): qppq=a(p+q)+b\frac{q - p}{p - q} = a(p + q) + b 1=a(p+q)+b-1 = a(p + q) + b a(p+q)=1ba(p + q) = -1 - b Since a0a \neq 0, we can write p+q=1bap + q = \frac{-1 - b}{a}.

Adding equation (1) and equation (2): q+p=(ap2+bp)+(aq2+bq)q + p = (ap^2 + bp) + (aq^2 + bq) p+q=a(p2+q2)+b(p+q)p + q = a(p^2 + q^2) + b(p + q) Let S=p+qS = p + q and P=pqP = pq. The equation becomes: S=a(S22P)+bSS = a(S^2 - 2P) + bS SbS=a(S22P)S - bS = a(S^2 - 2P) S(1b)=a(S22P)S(1 - b) = a(S^2 - 2P)

Substitute S=1baS = \frac{-1 - b}{a}: 1ba(1b)=a((1ba)22P)\frac{-1 - b}{a}(1 - b) = a\left(\left(\frac{-1 - b}{a}\right)^2 - 2P\right) (1+b)(1b)a=a((1+b)2a22P)\frac{-(1 + b)(1 - b)}{a} = a\left(\frac{(1 + b)^2}{a^2} - 2P\right) b21a=a((1+b)22a2Pa2)\frac{b^2 - 1}{a} = a\left(\frac{(1 + b)^2 - 2a^2 P}{a^2}\right) b21a=(1+b)22a2Pa\frac{b^2 - 1}{a} = \frac{(1 + b)^2 - 2a^2 P}{a} Multiply by aa (since a0a \neq 0): b21=(1+b)22a2Pb^2 - 1 = (1 + b)^2 - 2a^2 P b21=1+2b+b22a2Pb^2 - 1 = 1 + 2b + b^2 - 2a^2 P 1=1+2b2a2P-1 = 1 + 2b - 2a^2 P 2a2P=1+1+2b2a^2 P = 1 + 1 + 2b 2a2P=2+2b2a^2 P = 2 + 2b a2P=1+ba^2 P = 1 + b Since a0a \neq 0, a2>0a^2 > 0, so P=pq=1+ba2P = pq = \frac{1 + b}{a^2}.

Now we have the sum p+q=1bap+q = \frac{-1-b}{a} and the product pq=1+ba2pq = \frac{1+b}{a^2}. pp and qq are the roots of the quadratic equation x2(p+q)x+pq=0x^2 - (p+q)x + pq = 0. x2(1ba)x+1+ba2=0x^2 - \left(\frac{-1-b}{a}\right)x + \frac{1+b}{a^2} = 0 x2+1+bax+1+ba2=0x^2 + \frac{1+b}{a}x + \frac{1+b}{a^2} = 0 Multiplying by a2a^2 (since a0a \neq 0): a2x2+a(1+b)x+(1+b)=0a^2 x^2 + a(1+b)x + (1+b) = 0

For pp and qq to be real and distinct roots (since pqp \neq q), the discriminant of this quadratic equation must be positive. The discriminant D=(a(1+b))24(a2)(1+b)D = (a(1+b))^2 - 4(a^2)(1+b). D=a2(1+b)24a2(1+b)D = a^2 (1+b)^2 - 4a^2 (1+b) The condition D>0D > 0 is: a2(1+b)24a2(1+b)>0a^2 (1+b)^2 - 4a^2 (1+b) > 0 Since a0a \neq 0, a2>0a^2 > 0. We can divide by a2a^2: (1+b)24(1+b)>0(1+b)^2 - 4(1+b) > 0 Let X=1+bX = 1+b. The inequality becomes: X24X>0X^2 - 4X > 0 X(X4)>0X(X - 4) > 0

This inequality holds when X<0X < 0 or X>4X > 4. Case 1: X<0X < 0 1+b<01 + b < 0 b<1b < -1

Case 2: X>4X > 4 1+b>41 + b > 4 b>3b > 3

So, the possible values for bb are b<1b < -1 or b>3b > 3. We are given that bRb \in \mathbb{R} and b0b \neq 0. The condition b<1b < -1 or b>3b > 3 automatically satisfies b0b \neq 0.

We are looking for the least possible positive integral value of bb. The set of possible values for bb is (,1)(3,)(-\infty, -1) \cup (3, \infty). We are looking for positive integers in this set. The integers in (,1)(-\infty, -1) are ,3,2\dots, -3, -2. None of these are positive. The integers in (3,)(3, \infty) are 4,5,6,4, 5, 6, \dots. These are all positive integers. The least positive integral value in this set is 4.

For b=4b=4, the condition b>3b > 3 is satisfied, so there exist distinct real numbers p,qp, q which are the roots of a2x2+a(1+4)x+(1+4)=0a^2 x^2 + a(1+4)x + (1+4) = 0, i.e., a2x2+5ax+5=0a^2 x^2 + 5ax + 5 = 0. For any a0a \neq 0, the discriminant 5a2>05a^2 > 0, so distinct real roots exist. These roots p,qp, q satisfy p+q=5/ap+q = -5/a and pq=5/a2pq = 5/a^2. From our derivation, if p,qp, q are distinct real roots of this equation, then (p,q)(p, q) and (q,p)(q, p) lie on y=ax2+bxy = ax^2 + bx with b=4b=4.

The least possible positive integral value of bb is 4.