Solveeit Logo

Question

Question: If the zeros of the polynomial \[{x^3} - 3{x^2} + x + 1\] are \[a - b,a,a + b\]. Then find the value...

If the zeros of the polynomial x33x2+x+1{x^3} - 3{x^2} + x + 1 are ab,a,a+ba - b,a,a + b. Then find the values of aa and bb
A. a=1a = 1 and b=±2b = \pm \sqrt 2
B. a=±1a = \pm 1 and a=±2a = \pm \sqrt 2
C. a=2a = 2 and b=±1b = \pm 1
D. a=1a = - 1 and b=±2b = \pm \sqrt 2

Explanation

Solution

In this question, we will proceed by equating the values of sum of the roots or zeros and then product of the roots or zeroes to get the required values of aaand bb. So, use this concept to reach the solution of the given problem

Complete step-by-step answer :
The polynomial is x33x2+x+1{x^3} - 3{x^2} + x + 1 and their zeros or roots are ab,a,a+ba - b,a,a + b.
We know that for a cubic polynomial ax3+bx2+cx+da{x^3} + b{x^2} + cx + d, we have
Sum of the roots =ba = \dfrac{{ - b}}{a}
Sum of the product of two roots at a time =ca = \dfrac{c}{a}
Product of the roots =da = \dfrac{{ - d}}{a}
So, for the given polynomial x33x2+x+1{x^3} - 3{x^2} + x + 1 we have
Sum of the roots is given by

ab+a+a+b=(3)1 3a=3 a=1  \Rightarrow a - b + a + a + b = \dfrac{{ - \left( { - 3} \right)}}{1} \\\ \Rightarrow 3a = 3 \\\ \therefore a = 1 \\\

Product of the roots is given by

(ab)(a)(a+b)=(1)1 (1b)(1)(1+b)=1 [a=1] (1b2)=1 [(xy)(x+y)=x2y2] 1+1=b2 b2=2 b=±2  \Rightarrow \left( {a - b} \right)\left( a \right)\left( {a + b} \right) = \dfrac{{ - \left( { - 1} \right)}}{1} \\\ \Rightarrow \left( {1 - b} \right)\left( 1 \right)\left( {1 + b} \right) = - 1{\text{ }}\left[ {\because a = 1} \right] \\\ \Rightarrow \left( {1 - {b^2}} \right) = - 1{\text{ }}\left[ {\because \left( {x - y} \right)\left( {x + y} \right) = {x^2} - {y^2}} \right] \\\ \Rightarrow 1 + 1 = {b^2} \\\ \Rightarrow {b^2} = 2 \\\ \therefore b = \pm \sqrt 2 \\\

Therefore, we have a=1a = 1 and b=±2b = \pm \sqrt 2
Thus, the correct answer is A. a=1a = 1 and b=±2b = \pm \sqrt 2

Note : For a cubic polynomial ax3+bx2+cx+da{x^3} + b{x^2} + cx + d, we have
Sum of the roots =ba = \dfrac{{ - b}}{a}
Sum of the product of two roots at a time =ca = \dfrac{c}{a}
Product of the roots =da = \dfrac{{ - d}}{a}
For a cubic polynomial the number of zeros or roots are equal to 3.