Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the volume of the parallelopiped with a,b\vec{a},\vec{b} and c \vec{c} as coterminous edges is 40cubic40 \,cubic units, then the volume of the parallelopiped having b+c,c+a\vec{b}+\vec{c} , \vec{c}+ \vec{a} and a+b \vec{a}+ \vec{b} as coterminous edges in cubic units is

A

40

B

80

C

120

D

160

Answer

80

Explanation

Solution

Given, volume of parallelopiped [abc]=40[\vec{ a }\, \vec{ b } \,\vec{ c }]=40 \therefore Volume of parallelopiped b+cc+aa+b]\vec{ b }+\vec{ c } \vec{ c }+\vec{ a } \vec{ a }+\vec{ b }] =2[abc]=2[\vec{ a }\, \vec{ b }\, c ] =2×40=80 =2 \times 40=80 cu unit