Solveeit Logo

Question

Question: If the volume of a Tetrahedron formed by coterminous edges \(\vec{a},\vec{b},\vec{c}\) is 2,then the...

If the volume of a Tetrahedron formed by coterminous edges a,b,c\vec{a},\vec{b},\vec{c} is 2,then the volume of parallelepiped formed by coterminous edges a×b,b×c,c×a\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a} is
(a) 72
(b) 144
(c) 36
(d) 108

Explanation

Solution

First, we will draw the figure of a tetrahedron. Then we should know the formula of volume of tetrahedron formed by coterminous edges is given as 16[abc ]\dfrac{1}{6}\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right] . Using this, we will get value of [abc ]\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right] . Then for finding value of a×b,b×c,c×a\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a} , formula to be used is given as [abc ]2{{\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right]}^{2}} . Thus, on substituting the values and solving we will get the answer. The general formula of volume of parallelepiped having coterminous edges a,b,c\vec{a},\vec{b},\vec{c} is given as (a×b)c\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right| .

Complete step-by-step answer :
Here, we will draw a tetrahedron figure.

We should know that volume of Tetrahedron formed by coterminous edges a,b,c\vec{a},\vec{b},\vec{c} is given as 16[abc ]\dfrac{1}{6}\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right] .
We are also given that this volume is equal to 2. So, we can write it as
16[abc ]=2\dfrac{1}{6}\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right]=2
On solving this, we get as
[abc ]=2×6=12\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right]=2\times 6=12 ………………….(1)
Now, we have to find value of parallelepiped formed by coterminous edges a×b,b×c,c×a\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a} . So, we can write this as by replacing a\vec{a} as a×b\vec{a}\times \vec{b} , b\vec{b} as b×c\vec{b}\times \vec{c} , c\vec{c} as c×a\vec{c}\times \vec{a} in the general formula (a×b)c\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right| which is basically written as [abc ]\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right] . So, after replacing the values we will get as
[a×bb×cc×a ]\left[ \begin{matrix} \vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\\ \end{matrix} \right]
So, we can write it as (a×b).((b×c)×(c×a))\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right) which is known as quadrupole product of four product.
We have formula i.e. (a×b)×(c×d)=[abd ]c[abc ]d\left( \vec{a}\times \vec{b} \right)\times \left( \vec{c}\times \vec{d} \right)=\left[ \begin{matrix} a & b & d \\\ \end{matrix} \right]c-\left[ \begin{matrix} a & b & c \\\ \end{matrix} \right]d . So, on applying this we get as
(a×b).((b×c)×(c×a))=(a×b)([bca ]c[bcc ]a)\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix} b & c & a \\\ \end{matrix} \right]c-\left[ \begin{matrix} b & c & c \\\ \end{matrix} \right]a \right)
We also know that if two out of three vectors are the same then that is equal to zero. So, we can write it as
(a×b).((b×c)×(c×a))=(a×b)([bca ]c)=((a×b)c)[bca ]\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix} b & c & a \\\ \end{matrix} \right]c \right)=\left( \left( \vec{a}\times \vec{b} \right)\cdot c \right)\left[ \begin{matrix} b & c & a \\\ \end{matrix} \right]
So, we get as =[abc ][bca ]=\left[ \begin{matrix} a & b & c \\\ \end{matrix} \right]\left[ \begin{matrix} b & c & a \\\ \end{matrix} \right] . We know the cumulative rule of box i.e. given as [abc ]=[bca ]=[cab ]\left[ \begin{matrix} a & b & c \\\ \end{matrix} \right]=\left[ \begin{matrix} b & c & a \\\ \end{matrix} \right]=\left[ \begin{matrix} c & a & b \\\ \end{matrix} \right]
So, we will get as
[abc ]2{{\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right]}^{2}} ………………..(2)
So, we will directly substitute the value in above equation, and we get as
[a×bb×cc ×a]=[abc ]2=[12]2\left[ \begin{matrix} \vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\\ \end{matrix}\times \vec{a} \right]={{\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right]}^{2}}={{\left[ 12 \right]}^{2}}
Thus, on solving we get as
[a×bb×cc ×a]=144\left[ \begin{matrix} \vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\\ \end{matrix}\times \vec{a} \right]=144
Hence, option (b) is the correct answer.

Note : Students sometimes do not read question carefully and end up finding the value of [a+bb+cc +a]\left[ \begin{matrix} \vec{a}+\vec{b} & \vec{b}+\vec{c} & {\vec{c}} \\\ \end{matrix}+\vec{a} \right] . For finding this formula is almost similar as compare to finding value of [a×bb×cc×a ]\left[ \begin{matrix} \vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\\ \end{matrix} \right] i.e. 2[abc ]2\left[ \begin{matrix} {\vec{a}} & {\vec{b}} & {\vec{c}} \\\ \end{matrix} \right] . By placing value in the formula answer will be 24 which is wrong. So, do not solve it in a hurry and please read the question carefully and then attempt it.