Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If the vertices of triangle are (-2,6), (3,-6) and (1,5), then the area of the triangle is

A

40 sq. units

B

30 sq. units

C

15.5 sq. units

D

35 sq. units

Answer

15.5 sq. units

Explanation

Solution

Let's label the vertices of the triangle as A(2,6),B(3,6),and C(1,5).A(-2,6), B(3,-6), and\ C(1,5).
The formula to calculate the area of a triangle formed by three points A(x1,y1),B(x2,y2),and C(x3,y3)A(x_1, y_1), B(x_2, y_2), and\ C(x_3, y_3) is:
Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
Substituting the coordinates of the vertices into the formula:
Area=122(65)+3(5(6))+1(6(6))\text{Area} = \frac{1}{2} \left| -2(-6 - 5) + 3(5 - (-6)) + 1(6 - (-6)) \right|
=122(11)+3(1)+1(12)=\frac{1}{2} \left| -2(-11) + 3(-1) + 1(12) \right|
== 12×(223+12)\frac{1}{2} \times (22 - 3 + 12)
= 12×31\frac{1}{2} \times 31
= 312\frac{31}{2}
= 15.5
Therefore, the area of the triangle is 15.5 square units (option C).