Solveeit Logo

Question

Question: If the vertices of a triangle be \((am_{1}^{2},2am_{1}),(am_{2}^{2},2am_{2})\) and \((am_{3}^{2},2am...

If the vertices of a triangle be (am12,2am1),(am22,2am2)(am_{1}^{2},2am_{1}),(am_{2}^{2},2am_{2}) and (am32,2am3),(am_{3}^{2},2am_{3}), then the area of the triangle is.

A

a(m2m3)(m3m1)(m1m2)a(m_{2} - m_{3})(m_{3} - m_{1})(m_{1} - m_{2})

B

(m2m3)(m3m1)(m1m2)(m_{2} - m_{3})(m_{3} - m_{1})(m_{1} - m_{2})

C

a2(m2m3)(m3m1)(m1m2)a^{2}(m_{2} - m_{3})(m_{3} - m_{1})(m_{1} - m_{2})

D

None of these

Answer

a2(m2m3)(m3m1)(m1m2)a^{2}(m_{2} - m_{3})(m_{3} - m_{1})(m_{1} - m_{2})

Explanation

Solution

Area

=12am122am11am222am21am322am31=12a2×2m12m11m22m21m32m31= \frac { 1 } { 2 } \left| \begin{array} { l l l } a m _ { 1 } ^ { 2 } & 2 a m _ { 1 } & 1 \\ a m _ { 2 } ^ { 2 } & 2 a m _ { 2 } & 1 \\ a m _ { 3 } ^ { 2 } & 2 a m _ { 3 } & 1 \end{array} \right| = \frac { 1 } { 2 } a ^ { 2 } \times 2 \left| \begin{array} { l l l } m _ { 1 } ^ { 2 } & m _ { 1 } & 1 \\ m _ { 2 } ^ { 2 } & m _ { 2 } & 1 \\ m _ { 3 } ^ { 2 } & m _ { 3 } & 1 \end{array} \right|

=a2m12m22m1m20m22m32m2m30m32m31= a ^ { 2 } \left| \begin{array} { c c c } m _ { 1 } ^ { 2 } - m _ { 2 } ^ { 2 } & m _ { 1 } - m _ { 2 } & 0 \\ m _ { 2 } ^ { 2 } - m _ { 3 } ^ { 2 } & m _ { 2 } - m _ { 3 } & 0 \\ m _ { 3 } ^ { 2 } & m _ { 3 } & 1 \end{array} \right| , by R1R1R2R _ { 1 } \rightarrow R _ { 1 } - R _ { 2 } R2R2R3R _ { 2 } \rightarrow R _ { 2 } - R _ { 3 }

=a2(m22m32)(m1m2)(m2m3)(m12m22)= a ^ { 2 } \left( m _ { 2 } ^ { 2 } - m _ { 3 } ^ { 2 } \right) \left( m _ { 1 } - m _ { 2 } \right) - \left( m _ { 2 } - m _ { 3 } \right) \left( m _ { 1 } ^ { 2 } - m _ { 2 } ^ { 2 } \right) =a2(m1m2)(m2m3)(m3m1)= a ^ { 2 } \left( m _ { 1 } - m _ { 2 } \right) \left( m _ { 2 } - m _ { 3 } \right) \left( m _ { 3 } - m _ { 1 } \right).

Trick : Let a=2,m1=0,m2=1,m3=2a = 2 , m _ { 1 } = 0 , m _ { 2 } = 1 , m _ { 3 } = 2 then the

coordinates are (0, 0), (2, 4), (8, 8).

.