Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the vertices A,B,CA,B,C of a triangle ABCABC are(1,2,3),(1,0,0),(0,1,2)(1,2,3),(-1,0,0),(0,1,2), respectively,then find ABC\angle{ABC}.[ABC\angle{ABC} is the triangle between the vectorsBA \overrightarrow{BA}and BC \overrightarrow{BC}].

Answer

The vertices ABC△ABC are given as A(1,2,3),B(1,0,0),C(0,1,2).A(1,2,3),B(-1,0,0),C(0,1,2).
Also,it is given that ABC\angle ABC is the angle between the vectors BA  and  BC.\overrightarrow{BA}\space and\space \overrightarrow{ BC}.
\overrightarrow{BA}$$={1-(-1)}\hat{i}+(2-0)\hat{j}+(3-0)\hat{k}=2\hat{i+}2\hat{j}+3\hat{k}
BC=0(1)i^+(10)j^+(20)k^=i^+j^+2k^\overrightarrow{BC}={0-(-1)}\hat{i}+(1-0)\hat{j}+(2-0)\hat{k}=\hat{i}+\hat{j}+2\hat{k}
BA.BC=(2i^+2j^+3k^).(i^+j^+2k^)=2×1+2×1+3×2=10∴\overrightarrow{BA}.\overrightarrow{BC}→=(2\hat{i}+2\hat{j}+3\hat{k}).(\hat{i}+\hat{j}+2\hat{k})=2×1+2×1+3×2=10
BA=22+22+32=4+4+9=17|\overrightarrow{BA}|=\sqrt{22+22+32}=\sqrt{4+4+9}=\sqrt{17}
BC=1+1+22=6|\overrightarrow{BC}|=\sqrt{1+1+22}=\sqrt{6}
Now,It is known that:
BA.BC=BABCcos(ABC)\overrightarrow{BA}.\overrightarrow{BC}=|\overrightarrow{BA}||\overrightarrow{BC}|cos(∠ABC)
10=17×6cos(ABC)∴10=\sqrt{17}×\sqrt{6}cos(∠ABC)
cos(ABC)=1017×6⇒cos(\angle{ABC})=\frac{10}{\sqrt{17}\times\sqrt{6}}
ABC=cos1(10102)⇒∠ABC=cos^{-1}(\frac{10}{\sqrt{102}})