Solveeit Logo

Question

Mathematics Question on Vectors

If the vectors a=xi^+yj^+zk^\vec{ a }=x \hat{ i }+y \hat{ j }+z \hat{ k } and such that a,c\vec{ a }, \vec{ c } and b\vec{ b } form a right handed system, then c\vec{ c } is :

A

zi^xk^z \hat{ i }-x \hat{ k }

B

0\vec{0}

C

yj^y \hat{ j }

D

zi^+xk^-z \hat{ i }+x \hat{ k }

Answer

zi^xk^z \hat{ i }-x \hat{ k }

Explanation

Solution

Given that a=xi^+yj^+zk^\vec{a} = x\hat{ i} + y \hat{j} + z \hat{k} and b=j^\vec{b} = \hat{j} are such that a.c\vec{a}. \vec{c} and b\vec{b} form a right handed system c=b×a=i^j^k^ 010 xyz\therefore\vec{c} = \vec{b} \times\vec{a} = \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\\ 0&1&0\\\ x&y&z\end{vmatrix} =i^zxk^ =\hat{i} z - x \hat{k}