Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the vectors a=i^j^+2k^,b=2i^+4j^+k^\vec{a} = \hat{i}- \hat{j}+2 \hat{k}, \vec{b} = 2\hat{i}+4 \hat{j}+ \hat{k} and c=λi^+j^+μk^\vec{c} = \lambda\hat{i}+ \hat{j}+\mu \hat{k} are mutually orthogonal, then (λ,μ)=\left(\lambda, \mu\right) =

A

(2, -3)

B

(-2, 3)

C

(3, -2)

D

(-3, 2)

Answer

(-3, 2)

Explanation

Solution

ab=0,bc=0,ca=0\vec{a} \cdot\vec{b} = 0, \quad\vec{b} \cdot \vec{c} = 0, \quad\vec{c} \cdot \vec{a} = 0 2λ+4+μ=0λ1+2μ=0\Rightarrow 2\lambda + 4 + \mu = 0\quad\lambda - 1+2\mu = 0 Solving we get: λ=3,μ=2\lambda = -3, \,\mu = 2