Solveeit Logo

Question

Question: If the vectors \(\overrightarrow{b}\) (tan a, – 1, 2 \(\sqrt{\sin\alpha/2}\)) and \(\overrightarro...

If the vectors b\overrightarrow{b} (tan a, – 1, 2 sinα/2\sqrt{\sin\alpha/2}) and
c\overrightarrow{c} = (tan a, tan a, – 3sinα/2\frac{3}{\sqrt{\sin\alpha/2}}) are orthogonal and a vector a\overrightarrow{a} = (1, 3, sin 2a) makes an obtuse angle with z-axis, then the value of a is –

A

a = (4n + 1) p – tan–1 2

B

a = (4n + 2) p – tan–1 2

C

a = (4n + 1) p + tan–1 2

D

a = (4n + 2) p + tan–1 2

Answer

a = (4n + 1) p – tan–1 2

Explanation

Solution

a\overrightarrow{a} = (1, 3, sin 2a) makes an obtuse angle with z-axis

sin 2 a < 0

b\overrightarrow{b} and c\overrightarrow{c} are orthogonal b\overrightarrow{b}.c\overrightarrow{c} = 0

̃ tan2 a – tan a – 6 = 0

̃ tan a = 3 or – 2

If tan a = 3

sin 2a = 2tanα1+tan2α\frac{2\tan\alpha}{1 + \tan^{2}\alpha} = 35\frac{3}{5} > 0 (not possible),

tan a = – 2

tan 2 a = 43\frac{4}{3} > 0

sin 2a < 0

2a lies in the third quadrant ̃ α2\frac{\alpha}{2} lies in 2nd quadrant \ sinα/2\sqrt{\sin\alpha/2} is valid and

a = (4n + 1) p – tan–1 2.